harpreetsahota commited on
Commit
40ca1d6
·
verified ·
1 Parent(s): 30fb91c

Upload 2 files

Browse files
Files changed (2) hide show
  1. README (8).md +174 -0
  2. screenspot_v2 (1).gif +3 -0
README (8).md ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators: []
3
+ language: en
4
+ size_categories:
5
+ - 1K<n<10K
6
+ task_categories:
7
+ - image-classification
8
+ task_ids: []
9
+ pretty_name: ScreenSpot_v2
10
+ tags:
11
+ - fiftyone
12
+ - visual-agents
13
+ - gui-grounding
14
+ - os-agents
15
+ - image
16
+ - image-classification
17
+ dataset_summary: '
18
+
19
+
20
+
21
+
22
+ This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 1272 samples.
23
+
24
+
25
+ ## Installation
26
+
27
+
28
+ If you haven''t already, install FiftyOne:
29
+
30
+
31
+ ```bash
32
+
33
+ pip install -U fiftyone
34
+
35
+ ```
36
+
37
+
38
+ ## Usage
39
+
40
+
41
+ ```python
42
+
43
+ import fiftyone as fo
44
+
45
+ from fiftyone.utils.huggingface import load_from_hub
46
+
47
+
48
+ # Load the dataset
49
+
50
+ # Note: other available arguments include ''max_samples'', etc
51
+
52
+ dataset = load_from_hub("Voxel51/ScreenSpot-v2")
53
+
54
+
55
+ # Launch the App
56
+
57
+ session = fo.launch_app(dataset)
58
+
59
+ ```
60
+
61
+ '
62
+ ---
63
+
64
+ # Dataset Card for ScreenSpot-V2
65
+
66
+ ![image/png](screenspot_v2.gif)
67
+
68
+
69
+
70
+
71
+
72
+ This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 1272 samples.
73
+
74
+ ## Installation
75
+
76
+ If you haven't already, install FiftyOne:
77
+
78
+ ```bash
79
+ pip install -U fiftyone
80
+ ```
81
+
82
+ ## Usage
83
+
84
+ ```python
85
+ import fiftyone as fo
86
+ from fiftyone.utils.huggingface import load_from_hub
87
+
88
+ # Load the dataset
89
+ # Note: other available arguments include 'max_samples', etc
90
+ dataset = load_from_hub("Voxel51/ScreenSpot-v2")
91
+
92
+ # Launch the App
93
+ session = fo.launch_app(dataset)
94
+ ```
95
+
96
+
97
+ # Dataset Details
98
+ ## Dataset Source
99
+ - Repository: https://github.com/OS-Copilot/OS-Atlas and https://huggingface.co/datasets/os-copilot/screenspot-v2
100
+
101
+ - Paper: [OS-ATLAS: A Foundation Action Model for Generalist GUI Agents](https://arxiv.org/abs/2410.23218)
102
+
103
+ - Project Page: https://osatlas.github.io/
104
+
105
+ ## Uses
106
+ ### Direct Use
107
+ ScreenSpot-V2 is designed for evaluating single-step GUI grounding capabilities across multiple platforms (mobile, desktop, and web). It serves as a benchmark for assessing how well models can locate GUI elements based on natural language instructions.
108
+
109
+ ## Dataset Structure
110
+ The dataset is organized by platform type:
111
+ - Web domain: 436 questions
112
+ - Desktop domain: 334 questions
113
+ - Mobile domain: 502 questions
114
+
115
+ Each question requires identifying either text elements or icon/widget elements based on natural language instructions. The dataset includes screenshots and corresponding ground truth coordinates or bounding boxes for the target elements.
116
+
117
+ ## FiftyOne Dataset Structure
118
+
119
+ **Basic Info:** 1,581 desktop application screenshots with interaction annotations
120
+
121
+ **Core Fields:**
122
+
123
+ - `instruction`: StringField - Natural language task description
124
+ - `data_source`: EmbeddedDocumentField(Classification) - Operating system (e.g., "macos")
125
+ - `action_detection`: EmbeddedDocumentField(Detection) - Target interaction element:
126
+ - `label`: Element type (e.g., "text", "icon")
127
+ - `bounding_box`: a list of relative bounding box coordinates in [0, 1] in the following format:`[<top-left-x>, <top-left-y>, <width>, <height>]`
128
+
129
+
130
+ ## Dataset Creation
131
+ ### Curation Rationale
132
+ ScreenSpot-V2 was created to address annotation errors found in the original ScreenSpot benchmark. The authors identified that approximately 11.32% of the samples contained various issues that could lead to biased evaluation results.
133
+
134
+ ### Source Data
135
+ #### Data Collection and Processing
136
+ The dataset was derived from the original ScreenSpot benchmark. The authors:
137
+ 1. Removed problematic questions and replaced them with new ones
138
+ 2. Revised instructions that were in referring expression grounding (REG) form and rewrote them as natural language instructions
139
+ 3. Corrected mislabeled ground truth bounding boxes
140
+
141
+ #### Who are the source data producers?
142
+ The OS-ATLAS team, based on the original ScreenSpot benchmark by Cheng et al. (2024)
143
+
144
+ ### Annotations
145
+ #### Annotation process
146
+ The authors reviewed the original ScreenSpot dataset, identified problematic samples (approximately 11.32%), and made corrections while maintaining the same total number of questions.
147
+
148
+ #### Who are the annotators?
149
+ The OS-ATLAS research team
150
+
151
+
152
+ ## Bias, Risks, and Limitations
153
+ The dataset addresses several limitations of the original ScreenSpot benchmark, including:
154
+ - Spelling mistakes in instructions
155
+ - References to elements not present in screenshots
156
+ - Ambiguous questions allowing multiple valid answers
157
+ - High similarity between questions
158
+ - Incorrectly labeled ground truth bounding boxes
159
+
160
+ ## Recommendations
161
+ Users should consider that this dataset is specifically designed for evaluating GUI grounding performance across multiple platforms and may not cover all possible GUI interaction scenarios.
162
+
163
+ ## Citation
164
+ ### BibTeX:
165
+ ```bibtex
166
+ @article{wu2024atlas,
167
+ title={OS-ATLAS: A Foundation Action Model for Generalist GUI Agents},
168
+ author={Wu, Zhiyong and Wu, Zhenyu and Xu, Fangzhi and Wang, Yian and Sun, Qiushi and Jia, Chengyou and Cheng, Kanzhi and Ding, Zichen and Chen, Liheng and Liang, Paul Pu and others},
169
+ journal={arXiv preprint arXiv:2410.23218},
170
+ year={2024}
171
+ }
172
+ ```
173
+ ### APA:
174
+ Wu, Z., Wu, Z., Xu, F., Wang, Y., Sun, Q., Jia, C., Cheng, K., Ding, Z., Chen, L., Liang, P. P., & Qiao, Y. (2024). OS-ATLAS: A foundation action model for generalist GUI agents. arXiv preprint arXiv:2410.23218.
screenspot_v2 (1).gif ADDED

Git LFS Details

  • SHA256: aaf06f372e5a95b574d8639b3862c732cfc8746c943701ab3ce564a5ef9b583f
  • Pointer size: 133 Bytes
  • Size of remote file: 15 MB