| import datasets | |
| import pandas as pd | |
| _CITATION = """\ | |
| @InProceedings{huggingface:dataset, | |
| title = {selfie-and-video-on-back-camera}, | |
| author = {TrainingDataPro}, | |
| year = {2023} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| The dataset consists of selfies and video of real people made on a back camera | |
| of the smartphone. The dataset solves tasks in the field of anti-spoofing and | |
| it is useful for buisness and safety systems. | |
| """ | |
| _NAME = 'selfie-and-video-on-back-camera' | |
| _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" | |
| _LICENSE = "" | |
| _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" | |
| class SelfieAndVideoOnBackCamera(datasets.GeneratorBasedBuilder): | |
| """Small sample of image-text pairs""" | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features({ | |
| 'photo': datasets.Image(), | |
| 'video': datasets.Value('string'), | |
| 'phone': datasets.Value('string'), | |
| 'gender': datasets.Value('string'), | |
| 'age': datasets.Value('int8'), | |
| 'country': datasets.Value('string'), | |
| }), | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| images = dl_manager.download(f"{_DATA}photo.tar.gz") | |
| videos = dl_manager.download(f"{_DATA}video.tar.gz") | |
| annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") | |
| images = dl_manager.iter_archive(images) | |
| videos = dl_manager.iter_archive(videos) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "images": images, | |
| 'videos': videos, | |
| 'annotations': annotations | |
| }), | |
| ] | |
| def _generate_examples(self, images, videos, annotations): | |
| annotations_df = pd.read_csv(annotations, sep=';') | |
| for idx, ((image_path, image), | |
| (video_path, video)) in enumerate(zip(images, videos)): | |
| yield idx, { | |
| "photo": { | |
| "path": image_path, | |
| "bytes": image.read() | |
| }, | |
| "video": | |
| video_path, | |
| 'phone': | |
| annotations_df.loc[annotations_df['photo'].str.startswith( | |
| str(idx))]['phone'].values[0], | |
| 'gender': | |
| annotations_df.loc[annotations_df['photo'].str.startswith( | |
| str(idx))]['gender'].values[0], | |
| 'age': | |
| annotations_df.loc[annotations_df['photo'].str.startswith( | |
| str(idx))]['age'].values[0], | |
| 'country': | |
| annotations_df.loc[annotations_df['photo'].str.startswith( | |
| str(idx))]['country'].values[0], | |
| } | |