Datasets:
Gresham
commited on
Commit
·
aecf6f1
1
Parent(s):
720b6ae
feat: add llama fine tuning
Browse files- .gitignore +1 -0
- llama-fine-tuning-QLoRA.py +193 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
result/
|
llama-fine-tuning-QLoRA.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
# 切换到当前文件所在的目录
|
| 4 |
+
os.chdir(os.path.dirname(__file__))
|
| 5 |
+
|
| 6 |
+
# 导入必要的库
|
| 7 |
+
import torch
|
| 8 |
+
from datasets import load_dataset, Dataset
|
| 9 |
+
from transformers import (
|
| 10 |
+
AutoModelForCausalLM, # 用于加载预训练的语言模型
|
| 11 |
+
AutoTokenizer, # 用于加载与模型相匹配的分词器
|
| 12 |
+
BitsAndBytesConfig, # 用于配置4-bit量化
|
| 13 |
+
HfArgumentParser, # 用于解析命令行参数
|
| 14 |
+
TrainingArguments, # 用于设置训练参数
|
| 15 |
+
pipeline, # 用于创建模型的pipeline
|
| 16 |
+
logging, # 用于记录日志
|
| 17 |
+
)
|
| 18 |
+
from peft import LoraConfig, PeftModel # 用于配置和加载QLoRA模型
|
| 19 |
+
from trl import SFTTrainer # 用于执行监督式微调的Trainer
|
| 20 |
+
|
| 21 |
+
# 设置预训练模型的名称
|
| 22 |
+
model_name = "meta-llama/Llama-3.1-8B-Instruct"
|
| 23 |
+
|
| 24 |
+
# 设置微调后模型的名称
|
| 25 |
+
new_model = "Llama-3.1-8b-Instruct-fine-tuned"
|
| 26 |
+
|
| 27 |
+
# LoRA的注意力维度
|
| 28 |
+
lora_r = 64
|
| 29 |
+
|
| 30 |
+
# Alpha参数用于LoRA缩放
|
| 31 |
+
lora_alpha = 16
|
| 32 |
+
|
| 33 |
+
# LoRA层的dropout概率
|
| 34 |
+
lora_dropout = 0.1
|
| 35 |
+
|
| 36 |
+
# 激活4-bit精度的基础模型加载
|
| 37 |
+
use_4bit = True
|
| 38 |
+
|
| 39 |
+
# 4-bit基础模型的计算数据类型
|
| 40 |
+
bnb_4bit_compute_dtype = "float16"
|
| 41 |
+
|
| 42 |
+
# 4-bit量化类型(fp4或nf4)
|
| 43 |
+
bnb_4bit_quant_type = "nf4"
|
| 44 |
+
|
| 45 |
+
# 激活4-bit基础模型的嵌套量化(双重量化)
|
| 46 |
+
use_nested_quant = False
|
| 47 |
+
|
| 48 |
+
# 输出目录,用于存储模型预测和检查点
|
| 49 |
+
output_dir = "./results"
|
| 50 |
+
|
| 51 |
+
# 训练周期数
|
| 52 |
+
num_train_epochs = 1
|
| 53 |
+
|
| 54 |
+
# 是否启用fp16/bf16训练(在A100上将bf16设置为True)
|
| 55 |
+
fp16 = False
|
| 56 |
+
bf16 = True
|
| 57 |
+
|
| 58 |
+
# GPU上每个训练批次的样本数
|
| 59 |
+
per_device_train_batch_size = 4
|
| 60 |
+
|
| 61 |
+
# GPU上每个评估批次的样本数
|
| 62 |
+
per_device_eval_batch_size = 4
|
| 63 |
+
|
| 64 |
+
# 累积梯度的更新步骤数
|
| 65 |
+
gradient_accumulation_steps = 1
|
| 66 |
+
|
| 67 |
+
# 是否启用梯度检查点
|
| 68 |
+
gradient_checkpointing = True
|
| 69 |
+
|
| 70 |
+
# 最大梯度归一化(梯度裁剪)
|
| 71 |
+
max_grad_norm = 0.3
|
| 72 |
+
|
| 73 |
+
# 初始学习率(AdamW优化器)
|
| 74 |
+
learning_rate = 2e-4
|
| 75 |
+
|
| 76 |
+
# 权重衰减,应用于全部layer(不包括bias/LayerNorm的权重)
|
| 77 |
+
weight_decay = 0.001
|
| 78 |
+
|
| 79 |
+
# 优化器
|
| 80 |
+
optim = "paged_adamw_32bit"
|
| 81 |
+
|
| 82 |
+
# 学习率计划
|
| 83 |
+
lr_scheduler_type = "cosine"
|
| 84 |
+
|
| 85 |
+
# 训练步数(覆盖num_train_epochs)
|
| 86 |
+
max_steps = -1
|
| 87 |
+
|
| 88 |
+
# 线性预热的步数比率(从0到学习率)
|
| 89 |
+
warmup_ratio = 0.03
|
| 90 |
+
|
| 91 |
+
# 按长度分组序列
|
| 92 |
+
group_by_length = True
|
| 93 |
+
|
| 94 |
+
# 每X更新步骤保存检查点
|
| 95 |
+
save_steps = 0
|
| 96 |
+
|
| 97 |
+
# 每X更新步骤记录日志
|
| 98 |
+
logging_steps = 25
|
| 99 |
+
|
| 100 |
+
# SFT参数配置
|
| 101 |
+
# 最大序列长度
|
| 102 |
+
max_seq_length = None
|
| 103 |
+
|
| 104 |
+
# 打包多个短示例到同一输入序列以提高效率
|
| 105 |
+
packing = False
|
| 106 |
+
|
| 107 |
+
# 将整个模型加载到 GPU 0
|
| 108 |
+
device_map = {"": 0}
|
| 109 |
+
|
| 110 |
+
# 加载数据集
|
| 111 |
+
dataset = load_dataset(path="json", data_dir="./num_list", data_files="num_list_500_per_sample_100_length.json")
|
| 112 |
+
fine_tune_dataset = []
|
| 113 |
+
print("Loading dataset...")
|
| 114 |
+
for instance in dataset["train"]:
|
| 115 |
+
prompt = instance["system_prompt"] + "\n\n" + instance["description"] + "\nQuestion: " + instance["data"]["question"] + "\nData: " + instance["data"]["struct_data"]
|
| 116 |
+
answer = instance["data"]["answer"]
|
| 117 |
+
completion = f"The answer is {answer}."
|
| 118 |
+
fine_tune_dataset.append({"prompt": prompt, "completion": completion})
|
| 119 |
+
|
| 120 |
+
fine_tune_dataset = Dataset.from_list(fine_tune_dataset)
|
| 121 |
+
|
| 122 |
+
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
|
| 123 |
+
|
| 124 |
+
bnb_config = BitsAndBytesConfig(
|
| 125 |
+
load_in_4bit=use_4bit,
|
| 126 |
+
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
| 127 |
+
bnb_4bit_compute_dtype=compute_dtype,
|
| 128 |
+
bnb_4bit_use_double_quant=use_nested_quant,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
if compute_dtype == torch.float16 and use_4bit:
|
| 132 |
+
major, _ = torch.cuda.get_device_capability()
|
| 133 |
+
if major >= 8:
|
| 134 |
+
print("GPU支持bfloat16")
|
| 135 |
+
|
| 136 |
+
# 加载模型
|
| 137 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 138 |
+
model_name,
|
| 139 |
+
quantization_config=bnb_config,
|
| 140 |
+
device_map=device_map
|
| 141 |
+
)
|
| 142 |
+
model.config.use_cache = False
|
| 143 |
+
model.config.pretraining_tp = 1
|
| 144 |
+
|
| 145 |
+
# 加载分词器
|
| 146 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 147 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 148 |
+
tokenizer.padding_side = "right" # 修复fp16训练中的溢出问题
|
| 149 |
+
|
| 150 |
+
peft_config = LoraConfig(
|
| 151 |
+
lora_alpha=lora_alpha,
|
| 152 |
+
lora_dropout=lora_dropout,
|
| 153 |
+
r=lora_r,
|
| 154 |
+
bias="none",
|
| 155 |
+
task_type="CAUSAL_LM",
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
training_arguments = TrainingArguments(
|
| 159 |
+
output_dir=output_dir,
|
| 160 |
+
num_train_epochs=num_train_epochs,
|
| 161 |
+
per_device_train_batch_size=per_device_train_batch_size,
|
| 162 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
| 163 |
+
optim=optim,
|
| 164 |
+
save_steps=save_steps,
|
| 165 |
+
logging_steps=logging_steps,
|
| 166 |
+
learning_rate=learning_rate,
|
| 167 |
+
weight_decay=weight_decay,
|
| 168 |
+
fp16=fp16,
|
| 169 |
+
bf16=bf16,
|
| 170 |
+
max_grad_norm=max_grad_norm,
|
| 171 |
+
max_steps=max_steps,
|
| 172 |
+
warmup_ratio=warmup_ratio,
|
| 173 |
+
group_by_length=group_by_length,
|
| 174 |
+
lr_scheduler_type=lr_scheduler_type,
|
| 175 |
+
report_to="tensorboard",
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# 设置监督式微调参数
|
| 179 |
+
trainer = SFTTrainer(
|
| 180 |
+
model=model,
|
| 181 |
+
train_dataset=fine_tune_dataset,
|
| 182 |
+
peft_config=peft_config,
|
| 183 |
+
dataset_text_field="text",
|
| 184 |
+
max_seq_length=max_seq_length,
|
| 185 |
+
tokenizer=tokenizer,
|
| 186 |
+
args=training_arguments,
|
| 187 |
+
packing=packing,
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
# 训练模型
|
| 191 |
+
trainer.train()
|
| 192 |
+
|
| 193 |
+
trainer.model.save_pretrained(new_model)
|