Create small.py
Browse files
small.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datasets
|
| 2 |
+
import json
|
| 3 |
+
import numpy
|
| 4 |
+
|
| 5 |
+
_FEATURES = datasets.Features(
|
| 6 |
+
{
|
| 7 |
+
"id": datasets.Value("string"),
|
| 8 |
+
"prompt": datasets.Array3D(shape=(1, 77, 768), dtype="float32"),
|
| 9 |
+
"video": datasets.Sequence(feature=datasets.Array3D(shape=(4, 64, 64), dtype="float64")),
|
| 10 |
+
"description": datasets.Value("string"),
|
| 11 |
+
"videourl": datasets.Value("string"),
|
| 12 |
+
"categories": datasets.Value("string"),
|
| 13 |
+
"duration": datasets.Value("float"),
|
| 14 |
+
"full_metadata": datasets.Value("string"),
|
| 15 |
+
}
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
class FunkLoaderStream(datasets.GeneratorBasedBuilder):
|
| 19 |
+
"""TempoFunk Dataset"""
|
| 20 |
+
|
| 21 |
+
def _info(self):
|
| 22 |
+
return datasets.DatasetInfo(
|
| 23 |
+
description="TempoFunk Dataset",
|
| 24 |
+
features=_FEATURES,
|
| 25 |
+
homepage="None",
|
| 26 |
+
citation="None",
|
| 27 |
+
license="None"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
def _split_generators(self, dl_manager):
|
| 31 |
+
|
| 32 |
+
print("id_list available at:", dl_manager.download("data/id_list.json"))
|
| 33 |
+
|
| 34 |
+
_ID_LIST = json.loads(open(dl_manager.download("data/id_list.json"), 'r').read())
|
| 35 |
+
|
| 36 |
+
_SHARD_LENGTH = 20
|
| 37 |
+
|
| 38 |
+
_SPLITS = [_ID_LIST[i:i + _SHARD_LENGTH] for i in range(0, len(_ID_LIST), _SHARD_LENGTH)]
|
| 39 |
+
|
| 40 |
+
print("avail splits: ", _SPLITS)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
l=[]
|
| 44 |
+
|
| 45 |
+
_split_count = 0
|
| 46 |
+
|
| 47 |
+
for split in _SPLITS:
|
| 48 |
+
|
| 49 |
+
_list = []
|
| 50 |
+
|
| 51 |
+
for video_id in split:
|
| 52 |
+
_list.append({
|
| 53 |
+
"frames": dl_manager.download(f"data/videos/{video_id}.npy"),
|
| 54 |
+
"prompt": dl_manager.download(f"data/prompts/{video_id}.npy"),
|
| 55 |
+
"metadata": dl_manager.download(f"data/metadata/{video_id}.json"),
|
| 56 |
+
})
|
| 57 |
+
|
| 58 |
+
l.append(
|
| 59 |
+
datasets.SplitGenerator(
|
| 60 |
+
name=f"split_{_split_count}",
|
| 61 |
+
gen_kwargs={
|
| 62 |
+
"chunk_container": _list,
|
| 63 |
+
},)
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
_split_count = _split_count + 1
|
| 67 |
+
|
| 68 |
+
print("Total Splits: ", _split_count)
|
| 69 |
+
|
| 70 |
+
return l
|
| 71 |
+
|
| 72 |
+
def _generate_examples(self, chunk_container):
|
| 73 |
+
"""Generate images and labels for splits."""
|
| 74 |
+
for video_entry in chunk_container:
|
| 75 |
+
frames_binary = video_entry['frames']
|
| 76 |
+
prompt_binary = video_entry['prompt']
|
| 77 |
+
metadata = json.loads(open(video_entry['metadata'], 'r').read())
|
| 78 |
+
|
| 79 |
+
txt_embed = numpy.load(prompt_binary)
|
| 80 |
+
vid_embed = numpy.load(frames_binary)
|
| 81 |
+
|
| 82 |
+
print(vid_embed.shape)
|
| 83 |
+
|
| 84 |
+
yield metadata['id'], {
|
| 85 |
+
"id": metadata['id'],
|
| 86 |
+
"description": metadata['description'],
|
| 87 |
+
"prompt": txt_embed,
|
| 88 |
+
"video": vid_embed,
|
| 89 |
+
"videourl": metadata['videourl'],
|
| 90 |
+
"categories": metadata['categories'],
|
| 91 |
+
"duration": metadata['duration'],
|
| 92 |
+
"full_metadata": metadata
|
| 93 |
+
}
|