File size: 57,239 Bytes
628d76c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
import copy
import json
import os
from typing import Any

import cv2
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image

from lychsim.api import LychSim
from lychsim.utils.camera_projection_utils import project_3d_to_2d, get_bbox3d

from dataclasses import dataclass
from typing import List, Optional, Dict, Tuple
from scipy.spatial import cKDTree
from collections import defaultdict



class EasyDict(dict):
    """Convenience class that behaves like a dict but allows access with the attribute syntax."""

    def __getattr__(self, name: str) -> Any:
        try:
            return self[name]
        except KeyError:
            raise AttributeError(name)

    def __setattr__(self, name: str, value: Any) -> None:
        self[name] = value

    def __delattr__(self, name: str) -> None:
        del self[name]


def init_sampling_params(state):
    # list of table and floor objects
    # will be provided by Xingrui and Siyi
    state.floor_objects = [
        "/Game/ManagerOffice/Meshes/Props/SM_AmchairTreadle.SM_AmchairTreadle",
        "/Game/ManagerOffice/Meshes/Props/SM_ArmchairManager.SM_ArmchairManager",
        "/Game/ManagerOffice/Meshes/Props/SM_ColumnTable.SM_ColumnTable",
        "/Game/ManagerOffice/Meshes/Props/SM_Decorative17.SM_Decorative17",
        "/Game/ManagerOffice/Meshes/Props/SM_Komod.SM_Komod",
        "/Game/ManagerOffice/Meshes/Props/SM_KomodB.SM_KomodB",
        "/Game/ManagerOffice/Meshes/Props/SM_Plant2.SM_Plant2",
        "/Game/ManagerOffice/Meshes/Props/SM_Plant1.SM_Plant1",
        "/Game/ManagerOffice/Meshes/Props/SM_TeaTable.SM_TeaTable",
    ]
    state.table_objects = [
        "/Game/ManagerOffice/Meshes/Props/SM_Ashtray.SM_Ashtray",
        "/Game/ManagerOffice/Meshes/Props/SM_Award3.SM_Award3",
        "/Game/ManagerOffice/Meshes/Props/SM_Award9.SM_Award9",
        "/Game/ManagerOffice/Meshes/Props/SM_Book2.SM_Book2",
        "/Game/ManagerOffice/Meshes/Props/SM_CalendarDesk.SM_CalendarDesk",
        "/Game/ManagerOffice/Meshes/Props/SM_Decorative10.SM_Decorative10",
        "/Game/ManagerOffice/Meshes/Props/SM_Decorative37.SM_Decorative37",
        "/Game/ManagerOffice/Meshes/Props/SM_Fruits.SM_Fruits",
        "/Game/ManagerOffice/Meshes/Props/SM_PC.SM_PC",
        "/Game/ManagerOffice/Meshes/Props/SM_MarkerMug.SM_MarkerMug",
    ]

    mesh_extents = state.sim.get_mesh_extent(state.floor_objects + state.table_objects)[
        "outputs"
    ]
    state.mesh_extents = {
        x["mesh_path"]: x["extent"] for x in mesh_extents if x["status"] == "ok"
    }

    for x in state.floor_objects:
        if x not in state.mesh_extents:
            print(f"Warning: Floor object {x} not found in the scene.")
    for x in state.table_objects:
        if x not in state.mesh_extents:
            print(f"Warning: Table object {x} not found in the scene.")

    state.floor_objects = [x for x in state.floor_objects if x in state.mesh_extents]
    state.table_objects = [x for x in state.table_objects if x in state.mesh_extents]

    state.table_height_margin_low, state.table_height_margin_high = (
        -30.0,
        50.0,
    )  # table object hit box [top-30, top+50]
    state.table_object_threshold = (
        0.75  # IoA threshold: intersection over object volume
    )

    # number of trials to sample floor objects
    state.max_floor_sampling_trials = 20
    # IoU threshold for floor object collision detection
    state.floor_object_collision_iou_thr = 0.1
    # threshold for worst addition on floor: if worse than this, skip adding floor objects
    state.worst_floor_addition = -10

    # number of trials to sample table objects
    state.max_table_sampling_trials = 20
    # IoU threshold for table object collision detection
    state.table_object_collision_iou_thr = 0.1
    # threshold for worst addition on table: if worse than this, skip adding table objects
    state.worst_table_addition = -10


def add_selection_as_floor(state, num_objects):
    objects = state.sim.list_selected()
    if objects["status"] != "ok":
        raise RuntimeError(f"Failed to get selected objects. Response: {objects}")

    new_floors = []
    for obj in objects["outputs"]:
        obj_id = obj["object_id"]
        new_floors.append((obj_id, num_objects))

    before_count = len(state.floors)
    state.floors.update(new_floors)

    print(
        f"Added {len(new_floors)} object(s) to the floor list (prev={before_count} "
        f"-> now={len(state.floors)}):\n{state.floors}"
    )


def add_selection_as_table(state, num_objects):
    objects = state.sim.list_selected()
    if objects["status"] != "ok":
        raise RuntimeError(f"Failed to get selected objects. Response: {objects}")

    new_tables = []
    for obj in objects["outputs"]:
        obj_id = obj["object_id"]
        new_tables.append((obj_id, num_objects))

    before_count = len(state.tables)
    state.tables.update(new_tables)

    print(
        f"Added {len(new_tables)} object(s) to the table list (prev={before_count} "
        f"-> now={len(state.tables)}):\n{state.tables}"
    )


def add_camera_location(state):
    cam_id = state.cam_id
    loc = state.sim.get_cam_loc(0)

    before_count = len(state.cam_locations)
    state.cam_locations.append(loc)

    print(f"New location added (prev={before_count} -> {len(state.cam_locations)}):")
    for loc in state.cam_locations:
        print(f"\t{loc}")


def get_objects_on_aabb(state, table_aabb, objs_aabb):
    table_aabb, objs_aabb = copy.deepcopy(table_aabb), copy.deepcopy(objs_aabb)
    object_list = []
    target_center, target_extent = table_aabb["center"], table_aabb["extent"]

    # we compute the space above the table
    state.table_height_margin_low, state.table_height_margin_high = -30.0, 50.0
    target_center[2] = (
        target_center[2]
        + target_extent[2]
        + (state.table_height_margin_low + state.table_height_margin_high) / 2.0
    )
    target_extent[2] = (
        state.table_height_margin_high - state.table_height_margin_low
    ) / 2.0

    tgt_min = np.array(target_center) - np.array(target_extent)
    tgt_max = np.array(target_center) + np.array(target_extent)

    for aabb in objs_aabb:
        if aabb["status"] != "ok" or aabb["object_id"] == table_aabb["object_id"]:
            continue
        aabb["extent"] = [max(x, 1e-6) for x in aabb["extent"]]
        obj_min = np.array(aabb["center"]) - np.array(aabb["extent"])
        obj_max = np.array(aabb["center"]) + np.array(aabb["extent"])

        inter_min = np.maximum(obj_min, tgt_min)
        inter_max = np.minimum(obj_max, tgt_max)
        inter_extent = np.maximum(0.0, inter_max - inter_min)
        inter_vol = np.prod(inter_extent)

        obj_vol = np.prod(2 * np.array(aabb["extent"]))

        if inter_vol / obj_vol >= state.table_object_threshold:
            object_list.append(aabb["object_id"])

    return object_list


def clear_table_objects(state, table_id, objs_aabb):
    objs_aabb = copy.deepcopy(objs_aabb)
    table_aabb = [x for x in objs_aabb if x["object_id"] == table_id][0]
    objects_on_table = get_objects_on_aabb(state, table_aabb, objs_aabb)
    for obj_id in objects_on_table:
        state.sim.del_obj(obj_id)


def collide(center1, extent1, center2, extent2, thr):
    center1, extent1 = np.array(center1), np.array(extent1)
    center2, extent2 = np.array(center2), np.array(extent2)

    min1, max1 = center1 - extent1, center1 + extent1
    min2, max2 = center2 - extent2, center2 + extent2

    inter_min = np.maximum(min1, min2)
    inter_max = np.minimum(max1, max2)
    inter_extent = np.maximum(0.0, inter_max - inter_min)
    inter_vol = np.prod(inter_extent)

    vol1, vol2 = np.prod(2 * extent1), np.prod(2 * extent2)
    union_vol = vol1 + vol2 - inter_vol

    iou = inter_vol / union_vol if union_vol > 0 else 0.0
    return iou >= thr


def compute_addition_from_collision(state, objs_aabb, sampling):
    addition = len(sampling)

    # first check mutual collisions
    for obj1 in sampling:
        for obj2 in sampling:
            if obj1 >= obj2:
                continue
            if collide(
                sampling[obj1]["center"],
                sampling[obj1]["extent"],
                sampling[obj2]["center"],
                sampling[obj2]["extent"],
                state.floor_object_collision_iou_thr,
            ):
                return -1e5, []

    tables = [x[0] for x in state.tables]
    all_collided_objects = []
    for obj in sampling:
        collided_objects = [
            x
            for x in objs_aabb
            if collide(
                x["center"],
                x["extent"],
                sampling[obj]["center"],
                sampling[obj]["extent"],
                state.floor_object_collision_iou_thr,
            )
        ]
        for x in collided_objects:
            if x["object_id"] in tables:
                return -1e5, []
        addition -= len(collided_objects)
        all_collided_objects.extend([x["object_id"] for x in collided_objects])
    return addition, all_collided_objects


def sample_floor_objects(state, floor_id, num_objects, objs_aabb):
    floor_aabb = state.sim.get_obj_aabb(floor_id)["outputs"][0]
    target_center, target_extent = np.array(floor_aabb["center"]), np.array(
        floor_aabb["extent"]
    )
    target_extent[0] *= 0.9
    target_extent[1] *= 0.9

    best_sampling, best_addition, best_collisions = None, -1e6, None
    for _ in range(state.max_floor_sampling_trials):
        sampling = {}
        sampled_object_ids = [
            state.floor_objects[i]
            for i in np.random.choice(
                len(state.floor_objects), num_objects, replace=False
            )
        ]
        for soi in sampled_object_ids:
            horizontal_location = target_center[:2] + np.random.uniform(
                -target_extent[:2] * 0.5, target_extent[:2] * 0.5
            )
            vertical_location = target_center[2] + target_extent[2]
            sampling[soi] = dict(
                center=list(horizontal_location) + [vertical_location],
                extent=state.mesh_extents[soi],
            )
        addition, collisions = compute_addition_from_collision(
            state, objs_aabb, sampling
        )
        if addition > best_addition:
            best_addition = addition
            best_sampling = sampling
            best_collisions = collisions
    if best_addition < state.worst_floor_addition:
        # print(f"Best addition: {best_addition}, collisions: {best_collisions}")
        return None

    for obj_id in best_collisions:
        state.sim.del_obj(obj_id)
        # print(f"del {obj_id}")
    for obj_id in best_sampling:
        loc = best_sampling[obj_id]["center"]
        rot = [0.0, float(np.random.uniform(0, 360)), 0.0]
        state.sim.add_obj(f"{obj_id.split('.')[-1]}_{random_uuid()}", obj_id, loc, rot)
        # print(f"add {obj_id}, {loc}, {rot}")


def sample_table_objects(state, table_id, num_objects, objs_aabb):
    table_aabb = state.sim.get_obj_aabb(table_id)["outputs"][0]
    target_center, target_extent = np.array(table_aabb["center"]), np.array(
        table_aabb["extent"]
    )
    target_extent[0] *= 0.9
    target_extent[1] *= 0.9

    best_sampling, best_addition, best_collisions = None, -1e6, None
    for _ in range(state.max_table_sampling_trials):
        sampling = {}
        sampled_object_ids = [
            state.table_objects[i]
            for i in np.random.choice(
                len(state.table_objects), num_objects, replace=False
            )
        ]
        for soi in sampled_object_ids:
            horizontal_location = target_center[:2] + np.random.uniform(
                -target_extent[:2] * 0.5, target_extent[:2] * 0.5
            )
            vertical_location = target_center[2] + target_extent[2]
            sampling[soi] = dict(
                center=list(horizontal_location) + [vertical_location],
                extent=state.mesh_extents[soi],
            )
        addition, collisions = compute_addition_from_collision(
            state, objs_aabb, sampling
        )
        if addition > best_addition:
            best_addition = addition
            best_sampling = sampling
            best_collisions = collisions
    if best_addition < state.worst_table_addition:
        print(f"Best addition: {best_addition}, collisions: {best_collisions}")
        return None

    for obj_id in best_collisions:
        state.sim.del_obj(obj_id)
        print(f"del {obj_id}")
    for obj_id in best_sampling:
        loc = best_sampling[obj_id]["center"]
        rot = [0.0, float(np.random.uniform(0, 360)), 0.0]
        state.sim.add_obj(f"{obj_id.split('.')[-1]}_{random_uuid()}", obj_id, loc, rot)
        print(f"add {obj_id}, {loc}, {rot}")


def sample_random_placement(state):
    objs_aabb = state.sim.get_obj_aabb()["outputs"]

    for floor_id, num_objects in state.floors:
        sample_floor_objects(state, floor_id, num_objects, objs_aabb)

    for table_id, num_objects in state.tables:
        clear_table_objects(state, table_id, objs_aabb)
        sample_table_objects(state, table_id, num_objects, objs_aabb)


def get_random_camera_rotations(state):
    def sample_rotation():
        pitch = float(np.random.uniform(state.min_pitch, state.max_pitch))
        yaw = float(np.random.uniform(0, 360))
        roll = 0.0
        return [pitch, yaw, roll]

    return [sample_rotation() for _ in range(state.random_viewpoints_per_location)]
    
def get_random_camera_rotations_fixed_yaw(state):
    yaw_list = np.arange(0, 360, 60)
    def sample_rotation(i):
        pitch = 0.0
        yaw = yaw_list[i]
        roll = 0.0
        return [pitch, yaw, roll]
    return [sample_rotation(i) for i in range(len(yaw_list))]

def add_random_camera_height_offset(loc, state):
    offset = float(
        np.random.uniform(
            -state.random_camera_height_offset, state.random_camera_height_offset
        )
    )
    new_loc = loc.copy()
    new_loc[2] += offset
    return new_loc


def set_camera_location_and_rotation(scene_state, cam_loc_final, cam_rot):
    cam_id = scene_state.cam_id
    sim = scene_state.sim

    sim.set_cam_loc(cam_id, cam_loc_final)
    sim.set_cam_rot(cam_id, cam_rot)


def save_state(scene_state):
    save_state = {}
    for k in scene_state:
        if isinstance(scene_state[k], LychSim):
            save_state[k] = str(type(scene_state[k]))
        elif isinstance(scene_state[k], set):
            save_state[k] = list(scene_state[k])
        else:
            save_state[k] = scene_state[k]

    save_path = os.path.join(scene_state.save_path, scene_state.scene_name)
    os.makedirs(save_path, exist_ok=True)

    with open(os.path.join(save_path, "state.json"), "w") as f:
        json.dump(save_state, f, indent=4)


def capture_and_save(scene_state, view_name, camera_warmup_steps=10):
    scene_output_path = os.path.join(
        scene_state.save_path, scene_state.scene_name, view_name
    )
    os.makedirs(scene_output_path, exist_ok=True)

    scene_state.sim.warmup_cam(scene_state.cam_id, camera_warmup_steps)
    image = scene_state.sim.get_cam_lit(scene_state.cam_id)
    image.save(os.path.join(scene_output_path, "lit.png"))

    seg = scene_state.sim.get_cam_seg(scene_state.cam_id)
    seg.save(os.path.join(scene_output_path, "seg.png"))

    depth = scene_state.sim.get_cam_depth(scene_state.cam_id)
    np.save(os.path.join(scene_output_path, "depth.npy"), depth)

    normal = scene_state.sim.get_cam_normal(scene_state.cam_id)
    normal.save(os.path.join(scene_output_path, "normal.png"))

    annots_obj = scene_state.sim.get_obj_annots()
    with open(os.path.join(scene_output_path, "object_annots.json"), "w") as f:
        json.dump(annots_obj, f)

    annots_cam = scene_state.sim.get_cam_annots(scene_state.cam_id)
    fov = annots_cam["outputs"]["fov"]
    w = annots_cam["outputs"]["width"]
    h = annots_cam["outputs"]["height"]
    fovx = np.deg2rad(fov)
    fx = 0.5 * w / np.tan(0.5 * fovx)
    fovy = 2.0 * np.arctan((h / float(w)) * np.tan(0.5 * fovx))
    fy = 0.5 * h / np.tan(0.5 * fovy)
    annots_cam["outputs"]["fxfycxcy"] = [fx, fy, w / 2.0, h / 2.0]
    with open(os.path.join(scene_output_path, "camera_annots.json"), "w") as f:
        json.dump(annots_cam, f)

    scene_state.sim.clear_annot_comps()

def capture_and_save_filter(scene_state, view_name, camera_warmup_steps=10):
    scene_output_path = os.path.join(
        scene_state.save_path, scene_state.scene_name, view_name
    )
    os.makedirs(scene_output_path, exist_ok=True)


    seg = scene_state.sim.get_cam_seg(scene_state.cam_id)
    seg.save(os.path.join(scene_output_path, "seg.png"))

    depth = scene_state.sim.get_cam_depth(scene_state.cam_id)
    np.save(os.path.join(scene_output_path, "depth.npy"), depth)

    annots_obj = scene_state.sim.get_obj_annots()
    with open(os.path.join(scene_output_path, "object_annots.json"), "w") as f:
        json.dump(annots_obj, f)

    annots_cam = scene_state.sim.get_cam_annots(scene_state.cam_id)
    fov = annots_cam["outputs"]["fov"]
    w = annots_cam["outputs"]["width"]
    h = annots_cam["outputs"]["height"]
    fovx = np.deg2rad(fov)
    fx = 0.5 * w / np.tan(0.5 * fovx)
    fovy = 2.0 * np.arctan((h / float(w)) * np.tan(0.5 * fovx))
    fy = 0.5 * h / np.tan(0.5 * fovy)
    annots_cam["outputs"]["fxfycxcy"] = [fx, fy, w / 2.0, h / 2.0]
    with open(os.path.join(scene_output_path, "camera_annots.json"), "w") as f:
        json.dump(annots_cam, f)

    scene_state.sim.clear_annot_comps()


def capture_and_save_image(scene_state, view_name, camera_warmup_steps=10):
    scene_output_path = os.path.join(
        scene_state.save_path, scene_state.scene_name, view_name
    )
    os.makedirs(scene_output_path, exist_ok=True)

    scene_state.sim.warmup_cam(scene_state.cam_id, camera_warmup_steps)
    image = scene_state.sim.get_cam_lit(scene_state.cam_id)
    image.save(os.path.join(scene_output_path, "lit.png"))


def visualize_bbox(img, corners_2d, edges, color=(255, 255, 0, 255), thickness=2):
    for i, j in edges:
        pt1 = (int(corners_2d[i, 0]), int(corners_2d[i, 1]))
        pt2 = (int(corners_2d[j, 0]), int(corners_2d[j, 1]))
        cv2.line(img, pt1, pt2, color, thickness)
    plt.imshow(img)
    return img


def draw_bbox_3d(img, center, extent, c2w, fov):
    if isinstance(img, Image.Image):
        img = np.array(img)
    vis_img = np.array(img).copy()
    corners, edges = get_bbox3d(center=center, extent=extent)
    pts2d, in_front = project_3d_to_2d(corners, c2w, fov, 1920, 1080)
    vis_img = visualize_bbox(vis_img, pts2d, edges, color=(0, 255, 0, 255))
    return Image.fromarray(vis_img)


def random_uuid(length=4):
    return "".join(
        np.random.choice(list("abcdefghijklmnopqrstuvwxyz0123456789"), size=length)
    )


class CameraPositionEvaluator:
    """

    相机位置质量评估器 - 判断深度图和分割掩码质量是否合格

    

    评分权重:深度40% + 分割60%

    

    分割要求(非常严格):

    - ⚠️ 物体总数<6个,分割评分直接返回0,必定不合格

    - ⚠️ 任何物体占比>50%,分割评分直接返回0,必定不合格

    - 物体总数≥20个为满分,12-20个部分得分

    - 小物体(占比<5%)需要≥6个

    - 平均物体占比2-8%为理想

    - 最大物体占比理想范围10%-30%

    

    深度异常值检测策略(极其严格):

    - 自动过滤常见的无效深度值(65504, 65535, 0等)

    - ⚠️ 如果有效深度<90%(即无效值>10%),深度评分直接返回0,必定不合格

    - 检测深度单一性:如果深度值过于集中(如一面墙),会被降分

    - 智能判断:如果深度有足够变化(标准差/熵高,说明墙前有物品),则放宽集中度要求

    - 使用中位数而非均值计算比值(更鲁棒,不受极端值影响)

    - 最大深度/中位数比:检测单个极端异常值

    - 离群值占比:检测多个异常大的深度值(室外空旷区域)

    """
    
    def __init__(self, threshold: float = 0.6, background_color: Tuple[int, int, int] = (0, 0, 0)):
        """

        参数:

            threshold: 合格阈值,0-1之间,默认0.6

            background_color: 背景颜色RGB值,默认为黑色(0, 0, 0)

        """
        self.threshold = threshold
        self.depth_weight = 0.4   # 深度权重
        self.seg_weight = 0.6     # 分割权重
        self.background_color = background_color
    
    def evaluate(self, depth_map: np.ndarray, seg_mask: np.ndarray) -> Dict:
        """

        评估相机位置是否合格

        

        参数:

            depth_map: 深度图 (H, W),单位米

            seg_mask: 分割掩码 (H, W, 4),值为RGBA颜色,格式为(r, g, b, 255)

        

        返回:

            包含评估结果的字典:

            {

                'is_qualified': bool,  # 是否合格

                'score': float,        # 总评分 0-1

                'depth_score': float,  # 深度评分

                'seg_score': float,    # 分割评分

                'details': dict        # 详细指标

            }

        """
        # 验证分割掩码的形状
        if len(seg_mask.shape) != 3 or seg_mask.shape[2] != 4:
            raise ValueError(f"分割掩码形状应为 (H, W, 4),但得到 {seg_mask.shape}")
        
        # 深度评估
        depth_metrics = self._evaluate_depth(depth_map)
        depth_score = self._score_depth(depth_metrics)
        
        # 分割评估
        seg_metrics = self._evaluate_segmentation(seg_mask)
        seg_score = self._score_segmentation(seg_metrics)
        
        # 综合评分 (深度40%,分割60%)
        total_score = (depth_score * self.depth_weight + 
                      seg_score * self.seg_weight)
        
        # 判断是否合格
        is_qualified = total_score >= self.threshold
        
        return {
            'is_qualified': is_qualified,
            'score': round(total_score, 3),
            'depth_score': round(depth_score, 3),
            'seg_score': round(seg_score, 3),
            'details': {
                'depth': depth_metrics,
                'segmentation': seg_metrics
            }
        }
    
    def _evaluate_depth(self, depth_map: np.ndarray) -> Dict[str, float]:
        """评估深度图特征"""
        # 常见的无效深度标记值
        INVALID_DEPTH_VALUES = [65504.0, 65535.0, 0.0]
        
        # 过滤无效深度值
        valid_mask = depth_map > 0
        for invalid_val in INVALID_DEPTH_VALUES:
            valid_mask = valid_mask & (np.abs(depth_map - invalid_val) > 1.0)
        
        valid_depth = depth_map[valid_mask]
        
        if len(valid_depth) == 0:
            return {
                'coverage': 0.0,
                'range_mean_ratio': 0.0,
                'std_mean_ratio': 0.0,
                'entropy': 0.0,
                'max_depth': 0.0,
                'far_pixel_ratio': 0.0,
                'max_median_ratio': 0.0,
                'outlier_ratio': 0.0,
                'valid_depth_ratio': 0.0,
                'depth_concentration': 0.0
            }
        
        # 1. 有效深度覆盖率 - 真正有效的深度像素占比
        valid_depth_ratio = len(valid_depth) / depth_map.size
        
        # 2. 深度覆盖率(向后兼容)
        coverage = valid_depth_ratio
        
        # 3. 深度范围与均值的比值
        depth_range = float(np.max(valid_depth) - np.min(valid_depth))
        mean_depth = float(np.mean(valid_depth))
        range_mean_ratio = depth_range / mean_depth if mean_depth > 0 else 0.0
        
        # 4. 深度标准差与均值的比值
        std_depth = float(np.std(valid_depth))
        std_mean_ratio = std_depth / mean_depth if mean_depth > 0 else 0.0
        
        # 5. 深度分布熵
        hist, _ = np.histogram(valid_depth, bins=20)
        hist = hist / hist.sum()
        hist = hist[hist > 0]
        entropy = -np.sum(hist * np.log(hist))
        
        # 6. 最大深度值
        max_depth = float(np.max(valid_depth))
        
        # 7. 使用中位数检测远距离像素
        median_depth = float(np.median(valid_depth))
        
        # 远距离像素占比
        far_threshold = median_depth * 5.0
        far_pixels = valid_depth > far_threshold
        far_pixel_ratio = float(np.sum(far_pixels) / len(valid_depth))
        
        # 8. 最大深度/中位数比值
        max_median_ratio = max_depth / median_depth if median_depth > 0 else 0.0
        
        # 9. 离群值占比
        percentile_75 = float(np.percentile(valid_depth, 75))
        outlier_threshold = percentile_75 * 10.0
        outliers = valid_depth > outlier_threshold
        outlier_ratio = float(np.sum(outliers) / len(valid_depth))
        
        # 10. 深度集中度 - 检测深度值是否过于单一(比如大部分是一面墙)
        # 计算在中位数±15%范围内的像素占比
        median_threshold_low = median_depth * 0.85
        median_threshold_high = median_depth * 1.15
        concentrated_pixels = (valid_depth >= median_threshold_low) & (valid_depth <= median_threshold_high)
        depth_concentration = float(np.sum(concentrated_pixels) / len(valid_depth))
        
        return {
            'coverage': float(coverage),
            'range_mean_ratio': float(range_mean_ratio),
            'std_mean_ratio': float(std_mean_ratio),
            'entropy': float(entropy),
            'max_depth': float(max_depth),
            'far_pixel_ratio': float(far_pixel_ratio),
            'max_median_ratio': float(max_median_ratio),
            'outlier_ratio': float(outlier_ratio),
            'valid_depth_ratio': float(valid_depth_ratio),
            'depth_concentration': float(depth_concentration)
        }
    
    def _evaluate_segmentation(self, seg_mask: np.ndarray) -> Dict[str, float]:
        """

        评估分割掩码特征

        

        参数:

            seg_mask: 分割掩码 (H, W, 4),RGBA格式

        """
        # 提取RGB通道(忽略alpha通道)
        rgb_mask = seg_mask[:, :, :3]
        
        # 重塑为(H*W, 3)以便处理
        h, w = rgb_mask.shape[:2]
        total_pixels = h * w
        rgb_flat = rgb_mask.reshape(-1, 3)
        
        # 使用字典统计每个颜色的像素数
        color_counts = defaultdict(int)
        for pixel in rgb_flat:
            color_tuple = tuple(pixel)
            color_counts[color_tuple] += 1
        
        # 过滤背景颜色
        if self.background_color in color_counts:
            del color_counts[self.background_color]
        
        # 获取唯一颜色(物体)数量
        num_objects = len(color_counts)
        
        if num_objects == 0:
            return {
                'num_objects': 0,
                'num_small_objects': 0,
                'max_coverage': 0.0,
                'min_coverage': 0.0,
                'avg_coverage': 0.0,
                'has_large_object': False,
                'color_distribution': {}
            }
        
        # 计算每个物体的覆盖率
        coverages = []
        small_object_threshold = 0.05  # 占比<5%的算小物体
        large_object_threshold = 0.5   # 占比>50%的算大物体
        num_small_objects = 0
        has_large_object = False
        color_distribution = {}
        
        for color, count in color_counts.items():
            coverage = count / total_pixels
            coverages.append(coverage)
            
            # 统计小物体数量
            if coverage < small_object_threshold:
                num_small_objects += 1
            
            # 检测大物体
            if coverage > large_object_threshold:
                has_large_object = True
            
            # 记录颜色分布(可选,用于调试)
            color_str = f"RGB{color}"
            color_distribution[color_str] = round(coverage, 4)
        
        # 对覆盖率排序,便于查看分布
        color_distribution = dict(sorted(color_distribution.items(), 
                                       key=lambda x: x[1], reverse=True))
        
        return {
            'num_objects': float(num_objects),
            'num_small_objects': float(num_small_objects),
            'max_coverage': float(max(coverages)) if coverages else 0.0,
            'min_coverage': float(min(coverages)) if coverages else 0.0,
            'avg_coverage': float(np.mean(coverages)) if coverages else 0.0,
            'has_large_object': has_large_object,  # 添加大物体标记
            'color_distribution': color_distribution  # 添加颜色分布信息
        }
    
    def _score_segmentation(self, metrics: Dict[str, float]) -> float:
        """计算分割评分 (0-1) - 严格要求物体数量、小物体数量,并惩罚大面积物体"""
        num_objects = metrics['num_objects']
        num_small_objects = metrics['num_small_objects']
        max_coverage = metrics['max_coverage']
        
        # 硬性要求1:物体<6个直接不合格
        if num_objects < 6:
            return 0.0
        
        # 硬性要求2:任何物体占比超过50%直接不合格
        if max_coverage > 0.5:
            return 0.0
        
        score = 0.0
        
        # 物体总数量评分 (12-20个部分得分,≥20个满分) - 权重30%
        if num_objects >= 20:
            score += 0.3
        elif num_objects >= 12:
            # 12-20个之间线性增长
            score += ((num_objects - 12) / 8) * 0.3
        else:
            # 6-12个之间降低得分
            score += ((num_objects - 6) / 6) * 0.15
        
        # 小物体数量评分 (≥6个满分,<6个按比例) - 权重30%
        if num_small_objects >= 6:
            score += 0.3
        else:
            score += (num_small_objects / 6) * 0.3
        
        # 最大物体占比评分 (理想范围10%-30%) - 权重20%
        # 由于已经在50%处设置了硬性门槛,这里优化30%-50%之间的评分
        if max_coverage <= 0.1:
            # 太小也不理想(可能是分割过于碎片化)
            score += max_coverage / 0.1 * 0.1
        elif max_coverage <= 0.3:
            # 10%-30%是理想范围
            score += 0.2
        else:
            # 30%-50%之间线性下降
            score += (0.5 - max_coverage) / 0.2 * 0.2
        
        # 最小物体占比 (至少0.3%) - 权重10%
        min_coverage = metrics['min_coverage']
        if min_coverage >= 0.003:
            score += 0.1
        else:
            score += min_coverage / 0.003 * 0.1
        
        # 平均物体占比 (2-8%为理想,物体多所以占比要小) - 权重10%
        avg_coverage = metrics['avg_coverage']
        if 0.02 <= avg_coverage <= 0.08:
            score += 0.1
        elif avg_coverage < 0.02:
            score += avg_coverage / 0.02 * 0.1
        else:
            score += max(0, (1 - (avg_coverage - 0.08) / 0.12)) * 0.1
        
        return min(score, 1.0)
    
    def _score_depth(self, metrics: Dict[str, float]) -> float:
        """计算深度评分 (0-1) - 严格惩罚无效值和单一深度场景"""
        
        # 严格检查有效深度比例 - 无效值>10%直接不合格
        valid_depth_ratio = metrics['valid_depth_ratio']
        if valid_depth_ratio < 0.9:
            # 有效深度<90%(即无效值>10%),直接返回0分
            return 0.0
        
        score = 0.0
        
        # 有效深度覆盖率评分 (>98%为好) - 权重15%
        if valid_depth_ratio >= 0.98:
            score += 0.15
        else:
            # 90-98%之间线性评分
            score += ((valid_depth_ratio - 0.9) / 0.08) * 0.15
        
        # 深度范围/均值比评分 (0.5-2.0为理想) - 权重10%
        range_mean_ratio = metrics['range_mean_ratio']
        if 0.5 <= range_mean_ratio <= 2.0:
            score += 0.1
        elif range_mean_ratio < 0.5:
            score += range_mean_ratio / 0.5 * 0.1
        else:
            score += max(0, (1 - (range_mean_ratio - 2.0) / 3.0)) * 0.1
        
        # 深度标准差/均值比评分 (0.2-0.6为理想) - 权重10%
        std_mean_ratio = metrics['std_mean_ratio']
        if 0.2 <= std_mean_ratio <= 0.6:
            score += 0.1
        elif std_mean_ratio < 0.2:
            score += std_mean_ratio / 0.2 * 0.1
        else:
            score += max(0, (1 - (std_mean_ratio - 0.6) / 0.6)) * 0.1
        
        # 深度分布熵评分 (越高越好) - 权重10%
        entropy = metrics['entropy']
        max_entropy = 3.0
        score += min(entropy / max_entropy, 1.0) * 0.1
        
        # 深度集中度惩罚 - 权重15%(检测单一深度场景如一面墙)
        depth_concentration = metrics['depth_concentration']
        
        # 如果标准差/熵都比较高,说明有物品,放宽集中度要求
        has_variation = (std_mean_ratio >= 0.25) or (entropy >= 2.0)
        
        if has_variation:
            # 有足够的深度变化(墙前有物品),集中度要求宽松
            if depth_concentration <= 0.6:
                score += 0.15
            elif depth_concentration <= 0.8:
                score += (0.8 - depth_concentration) / 0.2 * 0.15
            else:
                score += 0.05  # 即使有变化,但集中度过高也要扣一些分
        else:
            # 深度变化不足,严格要求集中度
            if depth_concentration <= 0.5:
                score += 0.15
            elif depth_concentration <= 0.7:
                score += (0.7 - depth_concentration) / 0.2 * 0.15
            else:
                # 集中度>70%且无变化,严重扣分
                score += 0.0
        
        # 最大深度/中位数比值惩罚 - 权重20%
        max_median_ratio = metrics['max_median_ratio']
        if max_median_ratio <= 5.0:
            score += 0.2
        elif max_median_ratio <= 10.0:
            score += (10.0 - max_median_ratio) / 5.0 * 0.2
        else:
            penalty = max(0, 1 - (max_median_ratio - 10.0) / 50.0)
            score += penalty * 0.2
        
        # 离群值占比惩罚 - 权重20%
        outlier_ratio = metrics['outlier_ratio']
        if outlier_ratio <= 0.01:
            score += 0.2
        elif outlier_ratio <= 0.05:
            score += (0.05 - outlier_ratio) / 0.04 * 0.2
        else:
            penalty = max(0, 1 - (outlier_ratio - 0.05) / 0.15)
            score += penalty * 0.2
        
        return min(score, 1.0)




@dataclass
class CameraConfig:
    """相机配置类,统一管理相机参数"""
    width: float = 40.0
    height: float = 40.0
    depth: float = 40.0
    
    @property
    def size(self) -> List[float]:
        return [self.width, self.height, self.depth]
    
    @property
    def half_extents(self) -> List[float]:
        return [self.width/2, self.height/2, self.depth/2]


# 全局默认相机配置
DEFAULT_CAMERA = CameraConfig()


def compute_aabb_from_vertices(vertices):
    """

    从顶点计算AABB(轴对齐包围盒)的中心和半长

    

    Args:

        vertices: (N, 3) array, 物体的顶点

    

    Returns:

        dict: {

            'center': (3,) array,

            'extent': (3,) array (半长),

            'radius': float (包围球半径,用于快速排除)

        }

    """
    min_point = vertices.min(axis=0)
    max_point = vertices.max(axis=0)
    
    center = (min_point + max_point) / 2
    extent = (max_point - min_point) / 2
    
    # 计算包围球半径(用于快速排除)
    radius = np.linalg.norm(extent)
    
    return {
        'center': center,
        'extent': extent,
        'radius': radius,
        'min': min_point,
        'max': max_point
    }


def estimate_aabb_distance(aabb1_info, aabb2_info):
    """

    估算两个AABB之间的距离

    使用包围球距离减去半径作为下界估计

    

    Args:

        aabb1_info, aabb2_info: AABB信息字典

    

    Returns:

        float: 估算的最小距离(可能为负表示重叠)

    """
    center_dist = np.linalg.norm(aabb2_info['center'] - aabb1_info['center'])
    return center_dist - (aabb1_info['radius'] + aabb2_info['radius'])


def create_camera_aabb_vertices(position, camera_config=None):
    """

    创建相机的AABB顶点

    

    Args:

        position: [x, y, z] 相机中心位置

        camera_config: CameraConfig实例,None则使用默认配置

    

    Returns:

        (8, 3) array: 8个顶点坐标

    """
    if camera_config is None:
        camera_config = DEFAULT_CAMERA
    
    x, y, z = position
    w, h, d = camera_config.half_extents
    
    # 创建8个顶点(AABB)
    vertices = np.array([
        [x - w, y - h, z - d],  # 0: 底面左下
        [x + w, y - h, z - d],  # 1: 底面右下
        [x + w, y + h, z - d],  # 2: 底面右上
        [x - w, y + h, z - d],  # 3: 底面左上
        [x - w, y - h, z + d],  # 4: 顶面左下
        [x + w, y - h, z + d],  # 5: 顶面右下
        [x + w, y + h, z + d],  # 6: 顶面右上
        [x - w, y + h, z + d],  # 7: 顶面左上
    ])
    
    return vertices


def check_camera_collision(camera_position, 

                          object_vertices_list,

                          camera_config=None,

                          check_nearest=10,

                          collision_threshold=0.0,

                          use_improved_search=True):
    """

    检查相机位置是否与场景中的物体发生碰撞

    

    Args:

        camera_position: [x, y, z] 相机位置

        object_vertices_list: list of (N, 3) arrays,场景中所有物体的顶点

        camera_config: CameraConfig实例,None则使用默认配置

        check_nearest: 检查最近的几个物体

        collision_threshold: IoU碰撞阈值,默认0(任何重叠都算碰撞)

        use_improved_search: 是否使用改进的搜索方法

    

    Returns:

        dict: {

            'collision': bool,

            'colliding_indices': list,

            'collision_ious': list,  # 每个碰撞的IoU值

            'nearest_indices': list,

            'nearest_distances': list,

            'checked_count': int

        }

    """
    if camera_config is None:
        camera_config = DEFAULT_CAMERA
    
    # 创建相机AABB
    camera_center = np.array(camera_position)
    camera_extent = np.array(camera_config.half_extents)
    
    # 预计算所有物体的AABB信息
    object_aabb_infos = [compute_aabb_from_vertices(verts) 
                         for verts in object_vertices_list]
    
    if use_improved_search:
        # 改进的方法:使用包围球距离估算
        camera_aabb_info = {
            'center': camera_center,
            'extent': camera_extent,
            'radius': np.linalg.norm(camera_extent)
        }
        
        distances = []
        for i, aabb_info in enumerate(object_aabb_infos):
            # 使用包围球距离作为估算
            dist = estimate_aabb_distance(camera_aabb_info, aabb_info)
            distances.append((dist, i))
        
        # 按距离排序
        distances.sort(key=lambda x: x[0])
        
        # 选择最近的物体进行精确检查
        indices_to_check = [idx for _, idx in distances[:check_nearest]]
        nearest_distances = [dist for dist, _ in distances[:check_nearest]]
    else:
        # 原始方法:使用中心点距离
        object_centers = np.array([info['center'] for info in object_aabb_infos])
        kdtree = cKDTree(object_centers)
        center_distances, indices = kdtree.query(camera_position, 
                                                 k=min(check_nearest, len(object_centers)))
        
        if not isinstance(center_distances, np.ndarray):
            center_distances = np.array([center_distances])
            indices = np.array([indices])
        
        indices_to_check = indices
        nearest_distances = center_distances.tolist()
    
    # 检查碰撞
    colliding_indices = []
    collision_ious = []
    checked_count = 0
    
    for idx in indices_to_check:
        if not 0 <= idx < len(object_aabb_infos):
            continue
        
        checked_count += 1
        
        # 使用新的collide函数检查碰撞
        obj_info = object_aabb_infos[idx]
        
        # 计算IoU用于记录
        iou = compute_iou(camera_center, camera_extent, 
                         obj_info['center'], obj_info['extent'])
        
        if collide(camera_center, camera_extent, 
                  obj_info['center'], obj_info['extent'], 
                  collision_threshold):
            colliding_indices.append(int(idx))
            collision_ious.append(float(iou))
    
    return {
        'collision': len(colliding_indices) > 0,
        'colliding_indices': colliding_indices,
        'collision_ious': collision_ious,
        'nearest_indices': [int(idx) for idx in indices_to_check],
        'nearest_distances': nearest_distances,
        'checked_count': checked_count
    }


def compute_iou(center1, extent1, center2, extent2):
    """

    计算两个AABB的IoU值

    

    Args:

        center1, extent1: 第一个AABB的中心和半长

        center2, extent2: 第二个AABB的中心和半长

    

    Returns:

        float: IoU值(0到1之间)

    """
    center1, extent1 = np.array(center1), np.array(extent1)
    center2, extent2 = np.array(center2), np.array(extent2)

    min1, max1 = center1 - extent1, center1 + extent1
    min2, max2 = center2 - extent2, center2 + extent2

    inter_min = np.maximum(min1, min2)
    inter_max = np.minimum(max1, max2)
    inter_extent = np.maximum(0.0, inter_max - inter_min)
    inter_vol = np.prod(inter_extent)

    vol1, vol2 = np.prod(2 * extent1), np.prod(2 * extent2)
    union_vol = vol1 + vol2 - inter_vol

    iou = inter_vol / union_vol if union_vol > 0 else 0.0
    return iou


def compute_scene_bounds(object_vertices_list, 

                        margin=30, 

                        trim_percent=10,

                        camera_config=None):
    """

    计算包含所有物体的边界框,去掉极值

    

    Args:

        object_vertices_list: list of (N, 3) arrays

        margin: 边界内缩距离(cm)

        trim_percent: 去掉的极值百分比(0-50)

        camera_config: CameraConfig实例,用于确保边界足够大

    

    Returns:

        dict: 边界信息

    """
    if camera_config is None:
        camera_config = DEFAULT_CAMERA
    
    # 收集所有顶点
    all_vertices = np.vstack(object_vertices_list)
    total_vertices = len(all_vertices)
    
    # 计算要修剪的百分位数
    lower_percentile = trim_percent
    upper_percentile = 100 - trim_percent
    
    # 对每个轴分别计算修剪后的范围
    x_min = np.percentile(all_vertices[:, 0], lower_percentile)
    x_max = np.percentile(all_vertices[:, 0], upper_percentile)
    y_min = np.percentile(all_vertices[:, 1], lower_percentile)
    y_max = np.percentile(all_vertices[:, 1], upper_percentile)
    z_min = np.percentile(all_vertices[:, 2], lower_percentile)
    z_max = np.percentile(all_vertices[:, 2], upper_percentile)
    
    # 确保边界至少能容纳相机
    min_width = camera_config.width + 2 * margin
    min_height = camera_config.height + 2 * margin
    min_depth = camera_config.depth + 2 * margin
    
    # 应用边界内缩
    x_min += margin
    x_max -= margin
    y_min += margin
    y_max -= margin
    z_min += margin
    z_max -= margin
    
    # 确保边界足够大
    if x_max - x_min < min_width:
        center_x = (x_min + x_max) / 2
        x_min = center_x - min_width / 2
        x_max = center_x + min_width / 2
    
    if y_max - y_min < min_height:
        center_y = (y_min + y_max) / 2
        y_min = center_y - min_height / 2
        y_max = center_y + min_height / 2
    
    if z_max - z_min < min_depth:
        center_z = (z_min + z_max) / 2
        z_min = center_z - min_depth / 2
        z_max = center_z + min_depth / 2
    
    # 计算中心和尺寸
    center = [(x_min + x_max) / 2, (y_min + y_max) / 2, (z_min + z_max) / 2]
    size = [x_max - x_min, y_max - y_min, z_max - z_min]
    
    # 统计被修剪的顶点
    trimmed_mask = (
        (all_vertices[:, 0] < x_min - margin) | (all_vertices[:, 0] > x_max + margin) |
        (all_vertices[:, 1] < y_min - margin) | (all_vertices[:, 1] > y_max + margin) |
        (all_vertices[:, 2] < z_min - margin) | (all_vertices[:, 2] > z_max + margin)
    )
    trimmed_count = trimmed_mask.sum()
    
    return {
        'x_min': x_min,
        'x_max': x_max,
        'y_min': y_min,
        'y_max': y_max,
        'z_min': z_min,
        'z_max': z_max,
        'center': center,
        'size': size,
        'trimmed_vertices_count': int(trimmed_count),
        'total_vertices': total_vertices,
        'trim_percent': trim_percent,
        'camera_config': camera_config
    }


def sample_positions_fixed_heights(bounds, num_samples_per_height=5, num_heights=3, min_distance=None):
    """

    在固定高度上采样相机位置(XY平面泊松圆盘采样)

    

    Args:

        bounds: dict, 场景边界信息

        num_samples_per_height: 每个高度层采样多少个位置

        num_heights: 使用几个高度层(默认3个)

        min_distance: XY平面上点之间的最小距离(cm),None则自动计算

    

    Returns:

        list of [x, y, z]: 所有采样位置(纯Python float类型)

    """
    # 计算高度
    z_min = bounds['z_min']
    z_max = bounds['z_max']
    z_levels = np.linspace(z_min, z_max, num_heights+2)
    selected_heights = z_levels[1:-1]
    
    print(f"Z轴范围: [{z_min:.1f}, {z_max:.1f}] cm")
    print(f"选择的{num_heights}个高度: {[f'{z:.1f}' for z in selected_heights]}")
    
    # 如果没有指定最小距离,自动计算
    if min_distance is None:
        area = (bounds['x_max'] - bounds['x_min']) * (bounds['y_max'] - bounds['y_min'])
        avg_area_per_sample = area / num_samples_per_height
        min_distance = np.sqrt(avg_area_per_sample) * 0.8
        print(f"自动计算最小距离: {min_distance:.1f} cm")
    
    # 在每个高度上采样XY位置
    all_positions = []
    
    for i, height in enumerate(selected_heights):
        print(f"采样高度层 {i+1}/{num_heights}: Z={height:.1f} cm...", end=" ")
        xy_positions = sample_xy_poisson(
            bounds, 
            float(height),  # 转换为float
            num_samples_per_height, 
            min_distance
        )
        all_positions.extend(xy_positions)
        print(f"完成 ({len(xy_positions)} 个点)")
    
    print(f"总采样点数: {len(all_positions)}")
    
    return all_positions


def sample_xy_poisson(bounds, z_height, num_samples, min_distance):
    """

    在固定Z高度的XY平面上泊松圆盘采样

    

    Args:

        bounds: dict, 场景边界

        z_height: 固定的Z高度

        num_samples: 目标采样数量

        min_distance: XY平面上点之间的最小距离(cm)

    

    Returns:

        list of [x, y, z]: 采样位置(纯Python float类型)

    """
    positions = []
    max_attempts = num_samples * 100
    attempts = 0
    
    # 第一个点:在中心附近随机选择
    first_pos = [
        float(np.random.uniform(bounds['x_min'], bounds['x_max'])),
        float(np.random.uniform(bounds['y_min'], bounds['y_max'])),
        float(z_height)
    ]
    positions.append(first_pos)
    
    # 活跃点列表
    active_list = [0]
    
    while len(positions) < num_samples and attempts < max_attempts:
        attempts += 1
        
        if len(active_list) == 0:
            break
        
        # 从活跃列表中随机选择一个点
        idx = np.random.randint(0, len(active_list))
        active_idx = active_list[idx]
        base_pos = np.array(positions[active_idx][:2])  # 只取XY坐标
        
        # 尝试在该点周围生成新点
        found = False
        for _ in range(30):
            # 在min_distance到2*min_distance之间随机选择距离
            angle = np.random.uniform(0, 2 * np.pi)
            distance = np.random.uniform(min_distance, 2 * min_distance)
            
            # 生成新候选点(只在XY平面)
            new_xy = base_pos + distance * np.array([np.cos(angle), np.sin(angle)])
            new_pos = [float(new_xy[0]), float(new_xy[1]), float(z_height)]
            
            # 检查是否在边界内
            if not (bounds['x_min'] <= new_pos[0] <= bounds['x_max'] and
                   bounds['y_min'] <= new_pos[1] <= bounds['y_max']):
                continue
            
            # 检查与所有现有点的距离(只考虑XY平面)
            if len(positions) > 0:
                existing_xy = np.array([p[:2] for p in positions])
                distances = np.linalg.norm(existing_xy - new_xy, axis=1)
                if np.all(distances >= min_distance):
                    positions.append(new_pos)
                    active_list.append(len(positions) - 1)
                    found = True
                    break
        
        # 如果该活跃点无法生成新点,从活跃列表中移除
        if not found:
            active_list.pop(idx)
    
    # 如果泊松采样没有达到目标数量,用简单的随机采样补充
    if len(positions) < num_samples:
        while len(positions) < num_samples:
            candidate = [
                float(np.random.uniform(bounds['x_min'], bounds['x_max'])),
                float(np.random.uniform(bounds['y_min'], bounds['y_max'])),
                float(z_height)
            ]
            
            existing_xy = np.array([p[:2] for p in positions])
            candidate_xy = np.array(candidate[:2])
            distances = np.linalg.norm(existing_xy - candidate_xy, axis=1)
            
            if np.all(distances >= min_distance * 0.5):
                positions.append(candidate)
    
    return positions[:num_samples]





# Sample Look at Camera for placement
from math import pi, cos, sin, acos

@dataclass
class CameraPose:
    """存储相机位姿,包括位置和观察目标点"""
    position: List[float]
    look_at: List[float]

def _generate_points_on_sphere(num_points: int, target_center: np.ndarray, distance: float, z_min_ratio=-0.2) -> List[np.ndarray]:
    """

    使用斐波那契晶格在球面上生成均匀分布的点。

    

    Args:

        num_points: 要生成的点数。

        target_center: 球心(即目标物体中心)。

        distance: 球体半径(即相机与物体的距离)。

        z_min_ratio: Z轴方向的最小余弦值,用于限制采样范围(例如,避免从正下方采样)。

                     -1.0 为完整球体,0.0 为上半球。默认 -0.2,稍微偏下一点。

    

    Returns:

        List of np.ndarray: 球面上的点坐标列表。

    """
    points = []
    phi = pi * (3. - np.sqrt(5.))  # 黄金角

    for i in range(num_points):
        # 均匀分布在 [-1, 1] 之间
        y = 1 - (i / float(num_points - 1)) * 2
        
        # 限制垂直范围
        if y < z_min_ratio:
            continue
            
        radius = np.sqrt(1 - y * y)  # 当前高度的半径
        theta = phi * i  # 黄金角增量

        x = cos(theta) * radius
        z = sin(theta) * radius

        # 从单位向量转换为世界坐标
        point_on_sphere = np.array([x, y, z]) * distance + target_center
        points.append(point_on_sphere)
        
    return points


def sample_cameras_around_targets(

    target_object_indices: List[int],

    object_vertices_list: List[np.ndarray],

    scene_bounds: Dict,

    samples_per_target: int = 20,

    dist_factor_min: float = 2.0,

    dist_factor_max: float = 3.5,

    camera_config: Optional[CameraConfig] = None,

    collision_threshold: float = 0.0

) -> List[CameraPose]:
    """

    围绕指定的目标物体采样相机位姿。



    Args:

        target_object_indices: 目标物体的索引列表。

        object_vertices_list: 场景中所有物体的顶点列表。

        scene_bounds: 场景的边界信息(由 compute_scene_bounds 生成)。

        samples_per_target: 每个目标物体周围尝试采样的相机数量。

        dist_factor_min: 计算相机距离的最小系数(乘以物体AABB对角线长度)。

        dist_factor_max: 计算相机距离的最大系数。

        camera_config: 相机配置。

        collision_threshold: 碰撞检测的IoU阈值。



    Returns:

        List[CameraPose]: 所有有效的相机位姿列表。

    """
    if camera_config is None:
        camera_config = DEFAULT_CAMERA
        
    print(f"开始围绕 {len(target_object_indices)} 个目标物体进行采样...")
    
    # 预先计算所有物体的AABB信息
    all_object_aabbs = [compute_aabb_from_vertices(verts) for verts in object_vertices_list]
    
    valid_camera_poses = []
    
    for target_idx in target_object_indices:
        if not 0 <= target_idx < len(all_object_aabbs):
            print(f"警告: 目标索引 {target_idx} 超出范围,已跳过。")
            continue
            
        target_aabb = all_object_aabbs[target_idx]
        target_center = target_aabb['center']
        
        # 基于AABB对角线长度计算合适的相机距离
        aabb_diagonal = np.linalg.norm(np.array(target_aabb['extent']) * 2)
        cam_distance = np.random.uniform(
            aabb_diagonal * dist_factor_min,
            aabb_diagonal * dist_factor_max
        )
        
        print(f"\n正在处理目标物体 {target_idx}:")
        print(f"  - 中心点: [{target_center[0]:.1f}, {target_center[1]:.1f}, {target_center[2]:.1f}]")
        print(f"  - AABB对角线长度: {aabb_diagonal:.1f} cm")
        print(f"  - 采样距离: {cam_distance:.1f} cm")
        
        # 在目标周围的球面上生成候选点
        candidate_positions = _generate_points_on_sphere(
            samples_per_target,
            target_center,
            cam_distance
        )
        
        valid_count = 0
        for i, pos in enumerate(candidate_positions):
            # 1. 检查是否在场景边界内
            if not (scene_bounds['x_min'] <= pos[0] <= scene_bounds['x_max'] and
                    scene_bounds['y_min'] <= pos[1] <= scene_bounds['y_max'] and
                    scene_bounds['z_min'] <= pos[2] <= scene_bounds['z_max']):
                continue

            # 2. 检查与场景中所有物体的碰撞
            collision_info = check_camera_collision(
                camera_position=pos,
                object_vertices_list=object_vertices_list,
                camera_config=camera_config,
                collision_threshold=collision_threshold,
                use_improved_search=True # 推荐使用改进的搜索
            )
            
            # 如果没有发生碰撞
            if not collision_info['collision']:
                pose = CameraPose(
                    position=[float(p) for p in pos],
                    look_at=[float(c) for c in target_center]
                )
                valid_camera_poses.append(pose)
                valid_count += 1

        print(f"  - 生成了 {len(candidate_positions)} 个候选位置,其中 {valid_count} 个有效。")

    print(f"\n采样完成。总共获得了 {len(valid_camera_poses)} 个有效的相机位姿。")
    return valid_camera_poses