Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
DOI:
| import pyarrow as pa | |
| import pyarrow.parquet as pq | |
| import torch | |
| from transformers import AutoModel, AutoTokenizer | |
| query_prefix = "Represent this sentence for searching relevant passages: " | |
| topic_file_names = [ | |
| "topics.dl21.txt", | |
| "topics.dl22.txt", | |
| "topics.dl23.txt", | |
| "topics.msmarco-v2-doc.dev.txt", | |
| "topics.msmarco-v2-doc.dev2.txt", | |
| "topics.rag24.raggy-dev.txt", | |
| "topics.rag24.researchy-dev.txt", | |
| ] | |
| model_names = [ | |
| "Snowflake/snowflake-arctic-embed-l", | |
| "Snowflake/snowflake-arctic-embed-m-v1.5", | |
| ] | |
| for model_name in model_names: | |
| print(f"Running query embeddings using {model_name}") | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModel.from_pretrained( | |
| model_name, | |
| add_pooling_layer=False, | |
| ) | |
| model.eval() | |
| device = "cuda" | |
| model = model.to(device) | |
| for file_name in topic_file_names: | |
| short_file_name = ".".join(file_name.split(".")[:-1]) | |
| data = [] | |
| print(f"starting on {file_name}") | |
| with open(file_name, "r") as f: | |
| for line in f: | |
| line = line.strip().split("\t") | |
| qid = line[0] | |
| query_text = line[1] | |
| queries_with_prefix = [ | |
| "{}{}".format(query_prefix, i) for i in [query_text] | |
| ] | |
| query_tokens = tokenizer( | |
| queries_with_prefix, | |
| padding=True, | |
| truncation=True, | |
| return_tensors="pt", | |
| max_length=512, | |
| ) | |
| # Compute token embeddings | |
| with torch.autocast( | |
| "cuda", dtype=torch.bfloat16 | |
| ), torch.inference_mode(): | |
| query_embeddings = ( | |
| model(**query_tokens.to(device))[0][:, 0] | |
| .cpu() | |
| .to(torch.float32) | |
| .detach() | |
| .numpy()[0] | |
| ) | |
| item = {"id": qid, "text": query_text, "embedding": query_embeddings} | |
| data.append(item) | |
| table = pa.Table.from_pylist(data) | |
| pq.write_table( | |
| table, f"{model_name.split('/')[1]}-{short_file_name}.parquet" | |
| ) | |