Datasets:
ArXiv:
License:
Upload phost.py with huggingface_hub
Browse files
phost.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import Dict, List, Tuple
|
| 4 |
+
from zipfile import ZipFile
|
| 5 |
+
|
| 6 |
+
import datasets
|
| 7 |
+
import yaml
|
| 8 |
+
|
| 9 |
+
from seacrowd.utils import schemas
|
| 10 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
| 11 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
| 12 |
+
|
| 13 |
+
_CITATION = """\
|
| 14 |
+
@inproceedings{PhoST,
|
| 15 |
+
title = {{A High-Quality and Large-Scale Dataset for English-Vietnamese Speech Translation}},
|
| 16 |
+
author = {Linh The Nguyen and Nguyen Luong Tran and Long Doan and Manh Luong and Dat Quoc Nguyen},
|
| 17 |
+
booktitle = {Proceedings of the 23rd Annual Conference of the International Speech Communication Association (INTERSPEECH)},
|
| 18 |
+
year = {2022}
|
| 19 |
+
}
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
_DATASETNAME = "phost"
|
| 23 |
+
|
| 24 |
+
_DESCRIPTION = """\
|
| 25 |
+
PhoST is a high-quality and large-scale benchmark dataset for English-Vietnamese speech translation
|
| 26 |
+
with 508 audio hours, consisting of 331K triplets of (sentence-lengthed audio, English source
|
| 27 |
+
transcript sentence, Vietnamese target subtitle sentence).
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
_HOMEPAGE = "https://github.com/VinAIResearch/PhoST"
|
| 31 |
+
|
| 32 |
+
_LICENSE = Licenses.CC_BY_NC_ND_4_0.value
|
| 33 |
+
|
| 34 |
+
_LOCAL = True
|
| 35 |
+
|
| 36 |
+
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION, Tasks.SPEECH_TO_TEXT_TRANSLATION, Tasks.MACHINE_TRANSLATION]
|
| 37 |
+
|
| 38 |
+
_SOURCE_VERSION = "1.0.0"
|
| 39 |
+
|
| 40 |
+
_SEACROWD_VERSION = "2024.06.20"
|
| 41 |
+
|
| 42 |
+
_LANGUAGES = ["eng", "vie"]
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def seacrowd_config_constructor(src_lang, tgt_lang, schema, version):
|
| 46 |
+
if src_lang == "" or tgt_lang == "":
|
| 47 |
+
raise ValueError(f"Invalid src_lang {src_lang} or tgt_lang {tgt_lang}")
|
| 48 |
+
|
| 49 |
+
if schema not in ["source", "seacrowd_sptext", "seacrowd_t2t"]:
|
| 50 |
+
raise ValueError(f"Invalid schema: {schema}")
|
| 51 |
+
|
| 52 |
+
return SEACrowdConfig(
|
| 53 |
+
name="phost_{src}_{tgt}_{schema}".format(src=src_lang, tgt=tgt_lang, schema=schema),
|
| 54 |
+
version=datasets.Version(version),
|
| 55 |
+
description="phost schema for {schema} from {src} to {tgt}".format(schema=schema, src=src_lang, tgt=tgt_lang),
|
| 56 |
+
schema=schema,
|
| 57 |
+
subset_id="phost_{src}_{tgt}".format(src=src_lang, tgt=tgt_lang),
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class Phost(datasets.GeneratorBasedBuilder):
|
| 62 |
+
"""
|
| 63 |
+
PhoST is a high-quality and large-scale benchmark dataset for English-Vietnamese speech translation
|
| 64 |
+
with 508 audio hours, consisting of 331K triplets of (sentence-lengthed audio, English source
|
| 65 |
+
transcript sentence, Vietnamese target subtitle sentence).
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 69 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
| 70 |
+
|
| 71 |
+
BUILDER_CONFIGS = [
|
| 72 |
+
seacrowd_config_constructor("en", "vi", "source", _SOURCE_VERSION),
|
| 73 |
+
seacrowd_config_constructor("en", "vi", "seacrowd_sptext", _SEACROWD_VERSION),
|
| 74 |
+
seacrowd_config_constructor("en", "vi", "seacrowd_t2t", _SEACROWD_VERSION),
|
| 75 |
+
]
|
| 76 |
+
|
| 77 |
+
DEFAULT_CONFIG_NAME = "phost_en_vi_source"
|
| 78 |
+
|
| 79 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 80 |
+
if self.config.schema == "source":
|
| 81 |
+
features = datasets.Features(
|
| 82 |
+
{
|
| 83 |
+
"file": datasets.Value("string"),
|
| 84 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
| 85 |
+
"en_text": datasets.Value("string"),
|
| 86 |
+
"vi_text": datasets.Value("string"),
|
| 87 |
+
"timing": datasets.Sequence(datasets.Value("string")),
|
| 88 |
+
}
|
| 89 |
+
)
|
| 90 |
+
elif self.config.schema == "seacrowd_sptext":
|
| 91 |
+
features = schemas.speech_text_features
|
| 92 |
+
elif self.config.schema == "seacrowd_t2t":
|
| 93 |
+
features = schemas.text2text_features
|
| 94 |
+
|
| 95 |
+
return datasets.DatasetInfo(
|
| 96 |
+
description=_DESCRIPTION,
|
| 97 |
+
features=features,
|
| 98 |
+
homepage=_HOMEPAGE,
|
| 99 |
+
license=_LICENSE,
|
| 100 |
+
citation=_CITATION,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 104 |
+
"""Returns SplitGenerators."""
|
| 105 |
+
if self.config.data_dir is None:
|
| 106 |
+
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.")
|
| 107 |
+
else:
|
| 108 |
+
data_dir = self.config.data_dir
|
| 109 |
+
|
| 110 |
+
aud_path = os.path.join(data_dir, "audio_data")
|
| 111 |
+
if not os.path.exists(aud_path):
|
| 112 |
+
os.makedirs(aud_path)
|
| 113 |
+
|
| 114 |
+
# loading the temp.zip and creating a zip object
|
| 115 |
+
with ZipFile(os.path.join(data_dir, "train_audio.zip"), "r") as zObject:
|
| 116 |
+
for member in zObject.namelist():
|
| 117 |
+
if not os.path.exists(os.path.join(aud_path, "train", member)) or not os.path.isfile(os.path.join(aud_path, "train", member)):
|
| 118 |
+
zObject.extract(member, os.path.join(aud_path, "train"))
|
| 119 |
+
|
| 120 |
+
# dev audio files
|
| 121 |
+
with ZipFile(os.path.join(data_dir, "dev_audio.zip"), "r") as zObject:
|
| 122 |
+
for member in zObject.namelist():
|
| 123 |
+
if not os.path.exists(os.path.join(aud_path, "dev", member)) or not os.path.isfile(os.path.join(aud_path, "dev", member)):
|
| 124 |
+
zObject.extract(member, aud_path)
|
| 125 |
+
# test audio files
|
| 126 |
+
with ZipFile(os.path.join(data_dir, "test_audio.zip"), "r") as zObject:
|
| 127 |
+
for member in zObject.namelist():
|
| 128 |
+
if not os.path.exists(os.path.join(aud_path, "test", member)) or not os.path.isfile(os.path.join(aud_path, "test", member)):
|
| 129 |
+
zObject.extract(member, aud_path)
|
| 130 |
+
# text data
|
| 131 |
+
with ZipFile(os.path.join(data_dir, "text_data.zip"), "r") as zObject:
|
| 132 |
+
for member in zObject.namelist():
|
| 133 |
+
if not os.path.exists(os.path.join(data_dir, member)) or not os.path.isfile(os.path.join(data_dir, member)):
|
| 134 |
+
zObject.extract(member, data_dir)
|
| 135 |
+
|
| 136 |
+
return [
|
| 137 |
+
datasets.SplitGenerator(
|
| 138 |
+
name=datasets.Split.TRAIN,
|
| 139 |
+
gen_kwargs={
|
| 140 |
+
"filepath": {"audio": os.path.join(aud_path, "train", "wav"), "text": os.path.join(data_dir, "text_data", "train")},
|
| 141 |
+
"split": "train",
|
| 142 |
+
},
|
| 143 |
+
),
|
| 144 |
+
datasets.SplitGenerator(
|
| 145 |
+
name=datasets.Split.TEST,
|
| 146 |
+
gen_kwargs={
|
| 147 |
+
"filepath": {"audio": os.path.join(aud_path, "test", "wav"), "text": os.path.join(data_dir, "text_data", "test")},
|
| 148 |
+
"split": "test",
|
| 149 |
+
},
|
| 150 |
+
),
|
| 151 |
+
datasets.SplitGenerator(
|
| 152 |
+
name=datasets.Split.VALIDATION,
|
| 153 |
+
gen_kwargs={
|
| 154 |
+
"filepath": {"audio": os.path.join(aud_path, "dev", "wav"), "text": os.path.join(data_dir, "text_data", "dev")},
|
| 155 |
+
"split": "dev",
|
| 156 |
+
},
|
| 157 |
+
),
|
| 158 |
+
]
|
| 159 |
+
|
| 160 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
| 161 |
+
"""Yields examples as (key, example) tuples."""
|
| 162 |
+
config_names_split = self.config.name.split("_")
|
| 163 |
+
src_lang = config_names_split[1]
|
| 164 |
+
tgt_lang = config_names_split[2]
|
| 165 |
+
track_ids = os.listdir(filepath["text"])
|
| 166 |
+
timing = []
|
| 167 |
+
en_sub = []
|
| 168 |
+
vi_sub = []
|
| 169 |
+
counter = 0
|
| 170 |
+
for key, track_id in enumerate(track_ids):
|
| 171 |
+
with open(os.path.join(filepath["text"], track_id, track_id + ".yaml")) as timing_file:
|
| 172 |
+
timing = yaml.safe_load(timing_file)
|
| 173 |
+
with open(os.path.join(filepath["text"], track_id, track_id + ".en")) as en_text:
|
| 174 |
+
en_sub = [line.strip() for line in en_text]
|
| 175 |
+
with open(
|
| 176 |
+
os.path.join(filepath["text"], track_id, track_id + ".vi"),
|
| 177 |
+
) as vi_text:
|
| 178 |
+
vi_sub = [line.strip() for line in vi_text]
|
| 179 |
+
|
| 180 |
+
if self.config.schema == "source":
|
| 181 |
+
yield key, {"file": os.path.join(filepath["audio"], track_id + ".wav"), "audio": os.path.join(filepath["audio"], track_id + ".wav"), "en_text": " ".join(en_sub), "vi_text": " ".join(vi_sub), "timing": timing}
|
| 182 |
+
|
| 183 |
+
elif self.config.schema == "seacrowd_sptext":
|
| 184 |
+
if tgt_lang not in ["en", "vi"]:
|
| 185 |
+
raise NotImplementedError(f"Target language '{tgt_lang}' is not defined.")
|
| 186 |
+
|
| 187 |
+
yield key, {
|
| 188 |
+
"id": track_id,
|
| 189 |
+
"path": os.path.join(filepath["audio"], track_id + ".wav"),
|
| 190 |
+
"audio": os.path.join(filepath["audio"], track_id + ".wav"),
|
| 191 |
+
"text": " ".join(en_sub) if tgt_lang == "en" else " ".join(vi_sub),
|
| 192 |
+
"speaker_id": None,
|
| 193 |
+
"metadata": {
|
| 194 |
+
"speaker_age": None,
|
| 195 |
+
"speaker_gender": None,
|
| 196 |
+
},
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
elif self.config.schema == "seacrowd_t2t":
|
| 200 |
+
if src_lang not in ["en", "vi"]:
|
| 201 |
+
raise NotImplementedError(f"Source language '{src_lang}' is not defined.")
|
| 202 |
+
if tgt_lang not in ["en", "vi"]:
|
| 203 |
+
raise NotImplementedError(f"Target language '{tgt_lang}' is not defined.")
|
| 204 |
+
for en_line, vi_line in zip(en_sub, vi_sub):
|
| 205 |
+
yield counter, {
|
| 206 |
+
"id": f"{track_id}_{str(counter)}",
|
| 207 |
+
"text_1": en_line if src_lang == "en" else vi_line,
|
| 208 |
+
"text_2": en_line if tgt_lang == "en" else vi_line,
|
| 209 |
+
"text_1_name": src_lang,
|
| 210 |
+
"text_2_name": tgt_lang,
|
| 211 |
+
}
|
| 212 |
+
counter += 1
|
| 213 |
+
else:
|
| 214 |
+
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")
|