Update README.md
Browse files
README.md
CHANGED
|
@@ -4,4 +4,78 @@ language:
|
|
| 4 |
- en
|
| 5 |
size_categories:
|
| 6 |
- n<1K
|
| 7 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
- en
|
| 5 |
size_categories:
|
| 6 |
- n<1K
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
## sfia-9-chunks Dataset
|
| 10 |
+
|
| 11 |
+
### Overview
|
| 12 |
+
|
| 13 |
+
The `sfia-9-chunks` dataset is a derived dataset from [`sfia-9-scraped`](https://huggingface.co/datasets/Programmer-RD-AI/sfia-9-scraped). It uses sentence embeddings and hierarchical clustering to split each SFIA-9 document into coherent semantic chunks. This chunking facilitates more efficient downstream tasks like semantic search, question answering, and topic modeling.
|
| 14 |
+
|
| 15 |
+
### Chunking Methodology
|
| 16 |
+
|
| 17 |
+
We employ the following procedure to generate chunks:
|
| 18 |
+
|
| 19 |
+
```python
|
| 20 |
+
from sentence_transformers import SentenceTransformer
|
| 21 |
+
from sklearn.cluster import AgglomerativeClustering
|
| 22 |
+
|
| 23 |
+
MODEL_NAME = "all-MiniLM-L12-v2"
|
| 24 |
+
|
| 25 |
+
def get_chunks(document: str) -> list[str]:
|
| 26 |
+
model = SentenceTransformer(MODEL_NAME)
|
| 27 |
+
sentences = document.split(". ")
|
| 28 |
+
embs = model.encode(sentences)
|
| 29 |
+
clustering = AgglomerativeClustering(n_clusters=None, distance_threshold=1.0).fit(
|
| 30 |
+
embs
|
| 31 |
+
)
|
| 32 |
+
chunks = []
|
| 33 |
+
for label in set(clustering.labels_):
|
| 34 |
+
group = [
|
| 35 |
+
sentences[i]
|
| 36 |
+
for i in range(len(sentences))
|
| 37 |
+
if clustering.labels_[i] == label
|
| 38 |
+
]
|
| 39 |
+
chunks.append(". ".join(group))
|
| 40 |
+
return chunks
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
* **Model:** `all-MiniLM-L12-v2` for efficient sentence embeddings.
|
| 44 |
+
* **Clustering:** Agglomerative clustering with a distance threshold of `1.0` to dynamically determine the number of semantic groups.
|
| 45 |
+
|
| 46 |
+
### Dataset Structure
|
| 47 |
+
|
| 48 |
+
This dataset consists of a flat list of semantic text chunks derived from the SFIA-9 documents. When loaded, each example is an object with a single field:
|
| 49 |
+
|
| 50 |
+
* `chunks` (`string`): One coherent semantic chunk extracted via hierarchical clustering.
|
| 51 |
+
|
| 52 |
+
### Usage Example
|
| 53 |
+
|
| 54 |
+
```python
|
| 55 |
+
from datasets import load_dataset
|
| 56 |
+
|
| 57 |
+
dataset = load_dataset("Programmer-RD-AI/sfia-9-chunks")
|
| 58 |
+
|
| 59 |
+
for example in dataset:
|
| 60 |
+
print(example["chunks"])
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
### License
|
| 64 |
+
|
| 65 |
+
This dataset is released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
|
| 66 |
+
You can view the full license at: [https://creativecommons.org/licenses/by/4.0/](https://creativecommons.org/licenses/by/4.0/)
|
| 67 |
+
|
| 68 |
+
### Citation
|
| 69 |
+
|
| 70 |
+
If you use this dataset in your research, please cite:
|
| 71 |
+
|
| 72 |
+
```bibtex
|
| 73 |
+
@misc{ranuga_disansa_gamage_2025,
|
| 74 |
+
author = {Ranuga Disansa Gamage},
|
| 75 |
+
title = {sfia-9-chunks (Revision 035dc41)},
|
| 76 |
+
year = 2025,
|
| 77 |
+
url = {https://huggingface.co/datasets/Programmer-RD-AI/sfia-9-chunks},
|
| 78 |
+
doi = {10.57967/hf/5747},
|
| 79 |
+
publisher = {Hugging Face}
|
| 80 |
+
}
|
| 81 |
+
```
|