Upload 4 files
Browse files- Microsoft_Learn_Scrap_with_Google_Colab.ipynb +0 -0
- Scrapping.md +219 -0
- embedded_dataset.json +0 -0
- microsoft_learn_scrap_with_google_colab.py +216 -0
Microsoft_Learn_Scrap_with_Google_Colab.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
Scrapping.md
ADDED
|
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
"""# %% [markdown]
|
| 3 |
+
# # Web Scraping, Processing, and Embedding Project
|
| 4 |
+
#
|
| 5 |
+
# This notebook demonstrates a workflow for web scraping text data from a website, processing it into manageable chunks, and then creating numerical representations (embeddings) of these chunks using a sentence transformer model. Finally, the embedded data is saved to Google Drive.
|
| 6 |
+
#
|
| 7 |
+
# %% [markdown]
|
| 8 |
+
# # Install necessary libraries
|
| 9 |
+
# This cell installs all the required Python packages.
|
| 10 |
+
# %%
|
| 11 |
+
!pip install -q ipywidgets google-colab python-docx pypdf pandas nltk sentence-transformers torch tqdm pyarrow httpx beautifulsoup4 datasets requests
|
| 12 |
+
|
| 13 |
+
# %% [markdown]
|
| 14 |
+
# # Web scraping and data extraction script
|
| 15 |
+
# This script crawls a website and extracts text content from each page.
|
| 16 |
+
#
|
| 17 |
+
# %%
|
| 18 |
+
# prompt: write a script to navigate to the link https://learn.microsoft.com/en-us/ and start web scrapping and data extraction automatically on every page must scrap and extract all data, 100% data
|
| 19 |
+
|
| 20 |
+
import requests
|
| 21 |
+
from bs4 import BeautifulSoup
|
| 22 |
+
from urllib.parse import urljoin, urlparse
|
| 23 |
+
|
| 24 |
+
def is_valid(url):
|
| 25 |
+
'''Checks whether `url` is a valid URL.'''
|
| 26 |
+
try:
|
| 27 |
+
result = urlparse(url)
|
| 28 |
+
return all([result.scheme, result.netloc])
|
| 29 |
+
except:
|
| 30 |
+
return False
|
| 31 |
+
|
| 32 |
+
def get_all_website_links(url):
|
| 33 |
+
'''
|
| 34 |
+
Returns all URLs that is found on `url` in which it belongs to the same website
|
| 35 |
+
'''
|
| 36 |
+
urls = set()
|
| 37 |
+
domain_name = urlparse(url).netloc
|
| 38 |
+
try:
|
| 39 |
+
soup = BeautifulSoup(requests.get(url).content, "html.parser")
|
| 40 |
+
for a_tag in soup.findAll("a"):
|
| 41 |
+
href = a_tag.attrs.get("href")
|
| 42 |
+
if href == "" or href is None:
|
| 43 |
+
continue
|
| 44 |
+
href = urljoin(url, href)
|
| 45 |
+
parsed_href = urlparse(href)
|
| 46 |
+
href = parsed_href.scheme + "://" + parsed_href.netloc + parsed_href.path
|
| 47 |
+
if not is_valid(href):
|
| 48 |
+
continue
|
| 49 |
+
if parsed_href.netloc == domain_name:
|
| 50 |
+
urls.add(href)
|
| 51 |
+
except Exception as e:
|
| 52 |
+
print(f"Error processing {url}: {e}")
|
| 53 |
+
return urls
|
| 54 |
+
|
| 55 |
+
def scrape_page_data(url):
|
| 56 |
+
'''Scrapes all text content from a given URL.'''
|
| 57 |
+
try:
|
| 58 |
+
response = requests.get(url)
|
| 59 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
| 60 |
+
# Extract all text from the page
|
| 61 |
+
text = soup.get_text(separator='\n', strip=True)
|
| 62 |
+
return text
|
| 63 |
+
except Exception as e:
|
| 64 |
+
print(f"Error scraping {url}: {e}")
|
| 65 |
+
return None
|
| 66 |
+
|
| 67 |
+
def crawl_website(start_url, max_pages=100):
|
| 68 |
+
'''Crawls a website and scrapes data from each page.'''
|
| 69 |
+
visited_urls = set()
|
| 70 |
+
urls_to_visit = {start_url}
|
| 71 |
+
scraped_data = {}
|
| 72 |
+
|
| 73 |
+
while urls_to_visit and len(visited_urls) < max_pages:
|
| 74 |
+
current_url = urls_to_visit.pop()
|
| 75 |
+
if current_url in visited_urls:
|
| 76 |
+
continue
|
| 77 |
+
|
| 78 |
+
print(f"Visiting: {current_url}")
|
| 79 |
+
visited_urls.add(current_url)
|
| 80 |
+
|
| 81 |
+
# Scrape data
|
| 82 |
+
data = scrape_page_data(current_url)
|
| 83 |
+
if data:
|
| 84 |
+
scraped_data[current_url] = data
|
| 85 |
+
|
| 86 |
+
# Find new links
|
| 87 |
+
new_links = get_all_website_links(current_url)
|
| 88 |
+
for link in new_links:
|
| 89 |
+
if link not in visited_urls:
|
| 90 |
+
urls_to_visit.add(link)
|
| 91 |
+
|
| 92 |
+
return scraped_data
|
| 93 |
+
|
| 94 |
+
# Start the crawling process
|
| 95 |
+
start_url = "https://learn.microsoft.com/en-us/"
|
| 96 |
+
all_scraped_data = crawl_website(start_url)
|
| 97 |
+
|
| 98 |
+
# You can now process the `all_scraped_data` dictionary
|
| 99 |
+
# For example, print the number of pages scraped and the data from one page:
|
| 100 |
+
print(f"\nScraped data from {len(all_scraped_data)} pages.")
|
| 101 |
+
if all_scraped_data:
|
| 102 |
+
first_url = list(all_scraped_data.keys())[0]
|
| 103 |
+
print(f"\nData from the first scraped page ({first_url}):")
|
| 104 |
+
# print(all_scraped_data[first_url][:500]) # Print first 500 characters
|
| 105 |
+
|
| 106 |
+
# %% [markdown]
|
| 107 |
+
# # Data processing and embedding script
|
| 108 |
+
# This script takes the scraped data, chunks it, and creates embeddings using a sentence transformer model.
|
| 109 |
+
# %%
|
| 110 |
+
# prompt: write a script to convert, format, embed the full scrapped and extracted data to structured, embedded data chunks
|
| 111 |
+
|
| 112 |
+
import torch
|
| 113 |
+
from sentence_transformers import SentenceTransformer
|
| 114 |
+
from datasets import Dataset
|
| 115 |
+
from tqdm.auto import tqdm
|
| 116 |
+
|
| 117 |
+
# Check for GPU availability
|
| 118 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 119 |
+
print(f"Using device: {device}")
|
| 120 |
+
|
| 121 |
+
# Load a pre-trained sentence transformer model
|
| 122 |
+
model = SentenceTransformer('all-MiniLM-L6-v2').to(device)
|
| 123 |
+
|
| 124 |
+
def chunk_text(text, chunk_size=500, chunk_overlap=50):
|
| 125 |
+
'''Splits text into chunks with overlap.'''
|
| 126 |
+
words = text.split()
|
| 127 |
+
chunks = []
|
| 128 |
+
i = 0
|
| 129 |
+
while i < len(words):
|
| 130 |
+
chunk = words[i:i + chunk_size]
|
| 131 |
+
chunks.append(" ".join(chunk))
|
| 132 |
+
i += chunk_size - chunk_overlap
|
| 133 |
+
if i >= len(words) - chunk_overlap and i < len(words): # Handle the last chunk
|
| 134 |
+
chunks.append(" ".join(words[i:]))
|
| 135 |
+
break
|
| 136 |
+
|
| 137 |
+
return chunks
|
| 138 |
+
|
| 139 |
+
def process_scraped_data(scraped_data, chunk_size=500, chunk_overlap=50):
|
| 140 |
+
'''
|
| 141 |
+
Converts scraped data into formatted chunks and embeds them.
|
| 142 |
+
Returns a list of dictionaries, each containing chunk text, source URL, and embedding.
|
| 143 |
+
'''
|
| 144 |
+
processed_chunks = []
|
| 145 |
+
for url, text in tqdm(scraped_data.items(), desc="Processing scraped data"):
|
| 146 |
+
if text:
|
| 147 |
+
chunks = chunk_text(text, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
| 148 |
+
for chunk in chunks:
|
| 149 |
+
processed_chunks.append({
|
| 150 |
+
'text': chunk,
|
| 151 |
+
'source': url,
|
| 152 |
+
})
|
| 153 |
+
return processed_chunks
|
| 154 |
+
|
| 155 |
+
def embed_chunks(processed_chunks, model, batch_size=32):
|
| 156 |
+
'''Embeds the text chunks using the sentence transformer model.'''
|
| 157 |
+
# Extract texts for embedding
|
| 158 |
+
texts_to_embed = [chunk['text'] for chunk in processed_chunks]
|
| 159 |
+
|
| 160 |
+
# Create a Hugging Face Dataset
|
| 161 |
+
dataset = Dataset.from_dict({'text': texts_to_embed})
|
| 162 |
+
|
| 163 |
+
# Define a function to apply embeddings
|
| 164 |
+
def get_embeddings(batch):
|
| 165 |
+
return {'embedding': model.encode(batch['text'], convert_to_tensor=True).tolist()}
|
| 166 |
+
|
| 167 |
+
# Apply the embedding function in batches
|
| 168 |
+
dataset = dataset.map(get_embeddings, batched=True, batch_size=batch_size)
|
| 169 |
+
|
| 170 |
+
# Update the original processed_chunks list with embeddings
|
| 171 |
+
for i, item in enumerate(processed_chunks):
|
| 172 |
+
item['embedding'] = dataset[i]['embedding']
|
| 173 |
+
|
| 174 |
+
return processed_chunks
|
| 175 |
+
|
| 176 |
+
# --- Main script for processing and embedding ---
|
| 177 |
+
|
| 178 |
+
# Process the scraped data into chunks
|
| 179 |
+
formatted_chunks = process_scraped_data(all_scraped_data)
|
| 180 |
+
|
| 181 |
+
# Embed the chunks
|
| 182 |
+
embedded_data = embed_chunks(formatted_chunks, model)
|
| 183 |
+
|
| 184 |
+
# `embedded_data` is now a list of dictionaries, where each dictionary
|
| 185 |
+
# represents a chunk with its text, source URL, and embedding.
|
| 186 |
+
# You can now use this data for similarity search, indexing, etc.
|
| 187 |
+
|
| 188 |
+
print(f"\nCreated {len(embedded_data)} embedded chunks.")
|
| 189 |
+
if embedded_data:
|
| 190 |
+
print("\nExample of an embedded chunk:")
|
| 191 |
+
embedded_data[0]
|
| 192 |
+
|
| 193 |
+
# %% [markdown]
|
| 194 |
+
# # Save the embedded dataset to Google Drive
|
| 195 |
+
# This script saves the processed and embedded data to a JSON file in your Google Drive.
|
| 196 |
+
#
|
| 197 |
+
# %%
|
| 198 |
+
# prompt: write a script to save all converted, formatted, embedded dataset to the "Output" file on My Drive
|
| 199 |
+
|
| 200 |
+
import json
|
| 201 |
+
from google.colab import drive
|
| 202 |
+
|
| 203 |
+
# Mount Google Drive
|
| 204 |
+
drive.mount('/content/drive')
|
| 205 |
+
|
| 206 |
+
# Define the output file path
|
| 207 |
+
output_file_path = '/content/drive/My Drive/Output/embedded_dataset.json'
|
| 208 |
+
|
| 209 |
+
# Ensure the output directory exists
|
| 210 |
+
import os
|
| 211 |
+
output_dir = os.path.dirname(output_file_path)
|
| 212 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 213 |
+
|
| 214 |
+
# Save the embedded data to a JSON file
|
| 215 |
+
with open(output_file_path, 'w') as f:
|
| 216 |
+
json.dump(embedded_data, f, indent=2)
|
| 217 |
+
|
| 218 |
+
print(f"\nSaved embedded dataset to: {output_file_path}")
|
| 219 |
+
"""
|
embedded_dataset.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
microsoft_learn_scrap_with_google_colab.py
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Microsoft Learn Scrap with Google Colab.py
|
| 3 |
+
|
| 4 |
+
# Web Scraping, Processing, and Embedding
|
| 5 |
+
|
| 6 |
+
## Install necessary libraries
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
## pip install -q ipywidgets google-colab python-docx pypdf pandas nltk sentence-transformers torch tqdm pyarrow httpx beautifulsoup4 datasets requests
|
| 10 |
+
|
| 11 |
+
"""## Web scraping and data extraction script
|
| 12 |
+
This script crawls a website and extracts text content from each page.
|
| 13 |
+
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
# This script to navigate to the link https://learn.microsoft.com/en-us/ and start web scrapping and data extraction automatically on every page must scrap and extract all data, 100% data
|
| 17 |
+
|
| 18 |
+
import requests
|
| 19 |
+
from bs4 import BeautifulSoup
|
| 20 |
+
from urllib.parse import urljoin, urlparse
|
| 21 |
+
|
| 22 |
+
def is_valid(url):
|
| 23 |
+
"""Checks whether `url` is a valid URL."""
|
| 24 |
+
try:
|
| 25 |
+
result = urlparse(url)
|
| 26 |
+
return all([result.scheme, result.netloc])
|
| 27 |
+
except:
|
| 28 |
+
return False
|
| 29 |
+
|
| 30 |
+
def get_all_website_links(url):
|
| 31 |
+
"""
|
| 32 |
+
Returns all URLs that is found on `url` in which it belongs to the same website
|
| 33 |
+
"""
|
| 34 |
+
urls = set()
|
| 35 |
+
domain_name = urlparse(url).netloc
|
| 36 |
+
try:
|
| 37 |
+
soup = BeautifulSoup(requests.get(url).content, "html.parser")
|
| 38 |
+
for a_tag in soup.findAll("a"):
|
| 39 |
+
href = a_tag.attrs.get("href")
|
| 40 |
+
if href == "" or href is None:
|
| 41 |
+
continue
|
| 42 |
+
href = urljoin(url, href)
|
| 43 |
+
parsed_href = urlparse(href)
|
| 44 |
+
href = parsed_href.scheme + "://" + parsed_href.netloc + parsed_href.path
|
| 45 |
+
if not is_valid(href):
|
| 46 |
+
continue
|
| 47 |
+
if parsed_href.netloc == domain_name:
|
| 48 |
+
urls.add(href)
|
| 49 |
+
except Exception as e:
|
| 50 |
+
print(f"Error processing {url}: {e}")
|
| 51 |
+
return urls
|
| 52 |
+
|
| 53 |
+
def scrape_page_data(url):
|
| 54 |
+
"""Scrapes all text content from a given URL."""
|
| 55 |
+
try:
|
| 56 |
+
response = requests.get(url)
|
| 57 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
| 58 |
+
# Extract all text from the page
|
| 59 |
+
text = soup.get_text(separator='\n', strip=True)
|
| 60 |
+
return text
|
| 61 |
+
except Exception as e:
|
| 62 |
+
print(f"Error scraping {url}: {e}")
|
| 63 |
+
return None
|
| 64 |
+
|
| 65 |
+
def crawl_website(start_url, max_pages=100):
|
| 66 |
+
"""Crawls a website and scrapes data from each page."""
|
| 67 |
+
visited_urls = set()
|
| 68 |
+
urls_to_visit = {start_url}
|
| 69 |
+
scraped_data = {}
|
| 70 |
+
|
| 71 |
+
while urls_to_visit and len(visited_urls) < max_pages:
|
| 72 |
+
current_url = urls_to_visit.pop()
|
| 73 |
+
if current_url in visited_urls:
|
| 74 |
+
continue
|
| 75 |
+
|
| 76 |
+
print(f"Visiting: {current_url}")
|
| 77 |
+
visited_urls.add(current_url)
|
| 78 |
+
|
| 79 |
+
# Scrape data
|
| 80 |
+
data = scrape_page_data(current_url)
|
| 81 |
+
if data:
|
| 82 |
+
scraped_data[current_url] = data
|
| 83 |
+
|
| 84 |
+
# Find new links
|
| 85 |
+
new_links = get_all_website_links(current_url)
|
| 86 |
+
for link in new_links:
|
| 87 |
+
if link not in visited_urls:
|
| 88 |
+
urls_to_visit.add(link)
|
| 89 |
+
|
| 90 |
+
return scraped_data
|
| 91 |
+
|
| 92 |
+
# Start the crawling process
|
| 93 |
+
start_url = "https://learn.microsoft.com/en-us/"
|
| 94 |
+
all_scraped_data = crawl_website(start_url)
|
| 95 |
+
|
| 96 |
+
# You can now process the `all_scraped_data` dictionary
|
| 97 |
+
# For example, print the number of pages scraped and the data from one page:
|
| 98 |
+
print(f"\nScraped data from {len(all_scraped_data)} pages.")
|
| 99 |
+
if all_scraped_data:
|
| 100 |
+
first_url = list(all_scraped_data.keys())[0]
|
| 101 |
+
print(f"\nData from the first scraped page ({first_url}):")
|
| 102 |
+
# print(all_scraped_data[first_url][:500]) # Print first 500 characters
|
| 103 |
+
|
| 104 |
+
"""## Data processing and embedding script
|
| 105 |
+
This script takes the scraped data, chunks it, and creates embeddings using a sentence transformer model.
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
# This script to convert, format, embed the full scrapped and extracted data to structured, embedded data chunks
|
| 109 |
+
|
| 110 |
+
import torch
|
| 111 |
+
from sentence_transformers import SentenceTransformer # Changed import
|
| 112 |
+
from datasets import Dataset
|
| 113 |
+
from tqdm.auto import tqdm
|
| 114 |
+
|
| 115 |
+
# Check for GPU availability
|
| 116 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 117 |
+
print(f"Using device: {device}")
|
| 118 |
+
|
| 119 |
+
# Load a pre-trained sentence transformer model
|
| 120 |
+
model = SentenceTransformer('all-MiniLM-L6-v2').to(device)
|
| 121 |
+
|
| 122 |
+
def chunk_text(text, chunk_size=500, chunk_overlap=50):
|
| 123 |
+
"""Splits text into chunks with overlap."""
|
| 124 |
+
words = text.split()
|
| 125 |
+
chunks = []
|
| 126 |
+
i = 0
|
| 127 |
+
while i < len(words):
|
| 128 |
+
chunk = words[i:i + chunk_size]
|
| 129 |
+
chunks.append(" ".join(chunk))
|
| 130 |
+
i += chunk_size - chunk_overlap
|
| 131 |
+
if i >= len(words) - chunk_overlap and i < len(words): # Handle the last chunk
|
| 132 |
+
chunks.append(" ".join(words[i:]))
|
| 133 |
+
break
|
| 134 |
+
|
| 135 |
+
return chunks
|
| 136 |
+
|
| 137 |
+
def process_scraped_data(scraped_data, chunk_size=500, chunk_overlap=50):
|
| 138 |
+
"""
|
| 139 |
+
Converts scraped data into formatted chunks and embeds them.
|
| 140 |
+
Returns a list of dictionaries, each containing chunk text, source URL, and embedding.
|
| 141 |
+
"""
|
| 142 |
+
processed_chunks = []
|
| 143 |
+
for url, text in tqdm(scraped_data.items(), desc="Processing scraped data"):
|
| 144 |
+
if text:
|
| 145 |
+
chunks = chunk_text(text, chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
| 146 |
+
for chunk in chunks:
|
| 147 |
+
processed_chunks.append({
|
| 148 |
+
'text': chunk,
|
| 149 |
+
'source': url,
|
| 150 |
+
})
|
| 151 |
+
return processed_chunks
|
| 152 |
+
|
| 153 |
+
def embed_chunks(processed_chunks, model, batch_size=32):
|
| 154 |
+
"""Embeds the text chunks using the sentence transformer model."""
|
| 155 |
+
# Extract texts for embedding
|
| 156 |
+
texts_to_embed = [chunk['text'] for chunk in processed_chunks]
|
| 157 |
+
|
| 158 |
+
# Create a Hugging Face Dataset
|
| 159 |
+
dataset = Dataset.from_dict({'text': texts_to_embed})
|
| 160 |
+
|
| 161 |
+
# Define a function to apply embeddings
|
| 162 |
+
def get_embeddings(batch):
|
| 163 |
+
return {'embedding': model.encode(batch['text'], convert_to_tensor=True).tolist()}
|
| 164 |
+
|
| 165 |
+
# Apply the embedding function in batches
|
| 166 |
+
dataset = dataset.map(get_embeddings, batched=True, batch_size=batch_size)
|
| 167 |
+
|
| 168 |
+
# Update the original processed_chunks list with embeddings
|
| 169 |
+
for i, item in enumerate(processed_chunks):
|
| 170 |
+
item['embedding'] = dataset[i]['embedding']
|
| 171 |
+
|
| 172 |
+
return processed_chunks
|
| 173 |
+
|
| 174 |
+
# --- Main script for processing and embedding ---
|
| 175 |
+
|
| 176 |
+
# Process the scraped data into chunks
|
| 177 |
+
formatted_chunks = process_scraped_data(all_scraped_data)
|
| 178 |
+
|
| 179 |
+
# Embed the chunks
|
| 180 |
+
embedded_data = embed_chunks(formatted_chunks, model)
|
| 181 |
+
|
| 182 |
+
# `embedded_data` is now a list of dictionaries, where each dictionary
|
| 183 |
+
# represents a chunk with its text, source URL, and embedding.
|
| 184 |
+
# You can now use this data for similarity search, indexing, etc.
|
| 185 |
+
|
| 186 |
+
print(f"\nCreated {len(embedded_data)} embedded chunks.")
|
| 187 |
+
if embedded_data:
|
| 188 |
+
print("\nExample of an embedded chunk:")
|
| 189 |
+
embedded_data[0]
|
| 190 |
+
|
| 191 |
+
"""## Save the embedded dataset to Google Drive
|
| 192 |
+
This script saves the processed and embedded data to a JSON file in your Google Drive.
|
| 193 |
+
|
| 194 |
+
"""
|
| 195 |
+
|
| 196 |
+
# This script to save all converted, formatted, embedded dataset to the "Output" file on My Drive
|
| 197 |
+
|
| 198 |
+
import json
|
| 199 |
+
from google.colab import drive
|
| 200 |
+
|
| 201 |
+
# Mount Google Drive
|
| 202 |
+
drive.mount('/content/drive')
|
| 203 |
+
|
| 204 |
+
# Define the output file path
|
| 205 |
+
output_file_path = '/content/drive/My Drive/Output/embedded_dataset.json'
|
| 206 |
+
|
| 207 |
+
# Ensure the output directory exists
|
| 208 |
+
import os
|
| 209 |
+
output_dir = os.path.dirname(output_file_path)
|
| 210 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 211 |
+
|
| 212 |
+
# Save the embedded data to a JSON file
|
| 213 |
+
with open(output_file_path, 'w') as f:
|
| 214 |
+
json.dump(embedded_data, f, indent=2)
|
| 215 |
+
|
| 216 |
+
print(f"\nSaved embedded dataset to: {output_file_path}")
|