Datasets:
Upload folder using huggingface_hub
Browse files- README.md +102 -3
- download_android_control.ipynb +119 -0
- episode_goals.jsonl +0 -0
README.md
CHANGED
|
@@ -1,3 +1,102 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Android Control Dataset
|
| 2 |
+
|
| 3 |
+
## Overview
|
| 4 |
+
|
| 5 |
+
This directory contains two dataset files (`and_ctrl_train.json` and `and_ctrl_test.json`) derived from the [Android Control](https://github.com/google-research/google-research/tree/master/android_control) project by Google Research. These datasets have been formatted specifically for GUI grounding training in LLaMA-Factory.
|
| 6 |
+
|
| 7 |
+
## Dataset Description
|
| 8 |
+
|
| 9 |
+
The Android Control dataset consists of episodes where each episode contains multiple steps. Each step includes:
|
| 10 |
+
- **Step instructions**: Natural language instructions for UI interactions
|
| 11 |
+
- **Actions**: The type of action to perform (click, scroll, input text, etc.)
|
| 12 |
+
- **Coordinates**: Precise x, y coordinates for the action
|
| 13 |
+
|
| 14 |
+
The data has been extracted and formatted to train models for mobile UI understanding and interaction tasks.
|
| 15 |
+
|
| 16 |
+
## Files
|
| 17 |
+
|
| 18 |
+
- `and_ctrl_train.json`: Training dataset
|
| 19 |
+
- `and_ctrl_test.json`: Test/evaluation dataset
|
| 20 |
+
- `download_android_control.ipynb`: Jupyter notebook for downloading images and processing the original data
|
| 21 |
+
|
| 22 |
+
## Data Format
|
| 23 |
+
|
| 24 |
+
Each entry in the JSON files follows the LLaMA-Factory conversation format:
|
| 25 |
+
|
| 26 |
+
```json
|
| 27 |
+
{
|
| 28 |
+
"messages": [
|
| 29 |
+
{
|
| 30 |
+
"role": "system",
|
| 31 |
+
"content": "You are a helpful assistant that can identify what action to perform on mobile UI Screenshot given the user instruction."
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"role": "user",
|
| 35 |
+
"content": "<image>Click on the Recording 2"
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"role": "assistant",
|
| 39 |
+
"content": "{\"action_type\": \"click\", \"x\": 561, \"y\": 535}"
|
| 40 |
+
}
|
| 41 |
+
],
|
| 42 |
+
"images": ["and_ctrl/out_episode_18557_step_001.png"]
|
| 43 |
+
}
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## Setup Instructions
|
| 47 |
+
|
| 48 |
+
To use these datasets in LLaMA-Factory:
|
| 49 |
+
|
| 50 |
+
1. **Create the image directory**:
|
| 51 |
+
```bash
|
| 52 |
+
mkdir -p data/and_ctrl
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
2. **Download images**:
|
| 56 |
+
Run the provided `download_android_control.ipynb` notebook to download and process the original images. The notebook will:
|
| 57 |
+
- Download TFRecord files from Google Storage (`gs://gresearch/android_control/`)
|
| 58 |
+
- Extract images and save them directly to `and_ctrl/` directory
|
| 59 |
+
- Automatically organize images with the naming convention: `out_episode_{episode_id}_step_{step_number}.png`
|
| 60 |
+
- Generate an `and_ctrl.json` file with the processed data
|
| 61 |
+
|
| 62 |
+
3. **Dataset files**:
|
| 63 |
+
- Images: Stored in `data/and_ctrl/` folder
|
| 64 |
+
- Training dataset: `and_ctrl_train.json` in `data/datasets/`
|
| 65 |
+
- Test dataset: `and_ctrl_test.json` in `data/datasets/`
|
| 66 |
+
|
| 67 |
+
## Dataset Statistics
|
| 68 |
+
|
| 69 |
+
**Total samples**: Train: 82,944 | Test: 904
|
| 70 |
+
|
| 71 |
+
| Action Type | Train | Test |
|
| 72 |
+
|-------------|-------|------|
|
| 73 |
+
| click | 51,793 (62.44%) | 125 (13.83%) |
|
| 74 |
+
| scroll | 11,005 (13.27%) | 125 (13.83%) |
|
| 75 |
+
| input_text | 5,966 (7.19%) | 125 (13.83%) |
|
| 76 |
+
| wait | 5,657 (6.82%) | 125 (13.83%) |
|
| 77 |
+
| open_app | 5,572 (6.72%) | 125 (13.83%) |
|
| 78 |
+
| navigate_back | 2,909 (3.51%) | 125 (13.83%) |
|
| 79 |
+
| long_press | 42 (0.05%) | 125 (13.83%) |
|
| 80 |
+
| navigate_home | 0 (0.00%) | 29 (3.21%) |
|
| 81 |
+
|
| 82 |
+
**Note**: The training dataset shows a natural distribution with click actions being dominant (62.44%), while the test dataset is intentionally balanced with most action types having equal representation (~13.83% each). The `navigate_home` action appears only in the test set.
|
| 83 |
+
|
| 84 |
+
## Training Usage
|
| 85 |
+
|
| 86 |
+
These datasets are specifically formatted for training multimodal language models to:
|
| 87 |
+
- Understand mobile UI screenshots
|
| 88 |
+
- Ground natural language instructions to specific UI elements
|
| 89 |
+
- Generate precise action coordinates for UI automation
|
| 90 |
+
- Learn mobile app interaction patterns
|
| 91 |
+
|
| 92 |
+
## Source and Attribution
|
| 93 |
+
|
| 94 |
+
Original dataset: [Google Research Android Control](https://github.com/google-research/google-research/tree/master/android_control)
|
| 95 |
+
|
| 96 |
+
The Android Control dataset was created by Google Research for advancing mobile UI understanding and automation research.
|
| 97 |
+
|
| 98 |
+
## Notes
|
| 99 |
+
|
| 100 |
+
- The images are referenced with relative paths starting with `and_ctrl/`
|
| 101 |
+
- Each action includes the action type and necessary parameters (coordinates, text, direction, etc.)
|
| 102 |
+
- The test set can be used for evaluating model performance on unseen mobile UI interactions
|
download_android_control.ipynb
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"!git clone https://github.com/google-research/google-research.git\n",
|
| 10 |
+
"!pip install tensorflow"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "markdown",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"source": [
|
| 17 |
+
"# Download images"
|
| 18 |
+
]
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"cell_type": "code",
|
| 22 |
+
"execution_count": null,
|
| 23 |
+
"metadata": {
|
| 24 |
+
"colab": {
|
| 25 |
+
"base_uri": "https://localhost:8080/"
|
| 26 |
+
},
|
| 27 |
+
"id": "CgoFvmqCtps3",
|
| 28 |
+
"outputId": "64381a1a-5e3d-4ce4-92dd-6a11e43f61ed"
|
| 29 |
+
},
|
| 30 |
+
"outputs": [],
|
| 31 |
+
"source": "# -*- coding: utf-8 -*-\nimport io\nimport json\nfrom pathlib import Path\nfrom typing import Any, Dict, List, Optional, Tuple\n\nimport tensorflow as tf\nfrom PIL import Image\n\n# =========================\n# TF.Feature -> Python ๊ฐ ๋ณต์\n# =========================\ndef feature_to_list_bytes(f: tf.train.Feature) -> List[bytes]:\n return list(f.bytes_list.value)\n\ndef feature_to_list_int(f: tf.train.Feature) -> List[int]:\n return list(f.int64_list.value)\n\ndef feature_to_list_float(f: tf.train.Feature) -> List[float]:\n return list(f.float_list.value)\n\ndef get_feature(example: tf.train.Example, key: str) -> Optional[tf.train.Feature]:\n fmap = example.features.feature\n return fmap[key] if key in fmap else None\n\n# =========================\n# ์ก์
(dict)์์ ์ขํ ์ถ์ถ(์ ๊ทํ/ํฝ์
๋ชจ๋ ์ง์)\n# =========================\ndef extract_points_from_action(\n action: Dict[str, Any],\n img_w: int,\n img_h: int\n) -> List[Tuple[int, int]]:\n \"\"\"\n ๋ฐํ: [(x_px, y_px), ...]\n - ์ ํ๋(ํญ)๋ฉด ๊ธธ์ด 1\n - ๋๋๊ทธ/์ค์์ดํ๋ฉด ์์/๋ 2์ \n - ์์ผ๋ฉด []\n \"\"\"\n pts: List[Tuple[int, int]] = []\n\n def to_px(x: float, y: float, normalized: Optional[bool]=None) -> Tuple[int,int]:\n if normalized is None:\n normalized = (0.0 <= x <= 1.0 and 0.0 <= y <= 1.0)\n if normalized:\n return (int(round(x * img_w)), int(round(y * img_h)))\n else:\n return (int(round(x)), int(round(y)))\n\n # 1) ์ต์์ x, y\n if \"x\" in action and \"y\" in action:\n pts.append(to_px(float(action[\"x\"]), float(action[\"y\"]), None))\n\n # 2) point / click / tap / press / long_press / long_tap\n for k in [\"point\", \"click\", \"tap\", \"press\", \"long_press\", \"long_tap\"]:\n if k in action and isinstance(action[k], dict):\n px = action[k]\n if \"x\" in px and \"y\" in px:\n pts.append(to_px(float(px[\"x\"]), float(px[\"y\"]), None))\n if k in action and isinstance(action[k], list):\n for px in action[k]:\n if isinstance(px, dict) and \"x\" in px and \"y\" in px:\n pts.append(to_px(float(px[\"x\"]), float(px[\"y\"]), None))\n\n # 3) from/to, start/end\n for a, b in [(\"from\", \"to\"), (\"start\", \"end\")]:\n if a in action and b in action and isinstance(action[a], dict) and isinstance(action[b], dict):\n ax, ay = action[a].get(\"x\"), action[a].get(\"y\")\n bx, by = action[b].get(\"x\"), action[b].get(\"y\")\n if ax is not None and ay is not None and bx is not None and by is not None:\n pts.append(to_px(float(ax), float(ay), None))\n pts.append(to_px(float(bx), float(by), None))\n\n # 4) start_x/start_y/end_x/end_y\n cand = {\"start_x\": None, \"start_y\": None, \"end_x\": None, \"end_y\": None}\n found = False\n for ck in cand.keys():\n if ck in action:\n cand[ck] = float(action[ck])\n found = True\n if found and cand[\"start_x\"] is not None and cand[\"start_y\"] is not None:\n pts.append(to_px(cand[\"start_x\"], cand[\"start_y\"], None))\n if cand[\"end_x\"] is not None and cand[\"end_y\"] is not None:\n pts.append(to_px(cand[\"end_x\"], cand[\"end_y\"], None))\n\n # ์ค๋ณต ์ ๊ฑฐ\n uniq: List[Tuple[int,int]] = []\n seen = set()\n for p in pts:\n if p not in seen:\n uniq.append(p)\n seen.add(p)\n return uniq\n\n# =========================\n# ์ํผ์๋ ํ์ฑ\n# =========================\ndef load_episode_from_example(ex: tf.train.Example) -> Dict[str, Any]:\n f = ex.features.feature\n\n screenshots_bytes = feature_to_list_bytes(f[\"screenshots\"])\n a11y_bytes_list = feature_to_list_bytes(f[\"accessibility_trees\"])\n widths = feature_to_list_int(f[\"screenshot_widths\"])\n heights = feature_to_list_int(f[\"screenshot_heights\"])\n\n actions_json_list = [b.decode(\"utf-8\") for b in feature_to_list_bytes(f[\"actions\"])]\n step_insts = [b.decode(\"utf-8\") for b in feature_to_list_bytes(f[\"step_instructions\"])]\n actions = [json.loads(s) for s in actions_json_list]\n\n goal = f[\"goal\"].bytes_list.value[0].decode(\"utf-8\")\n episode_id = int(f[\"episode_id\"].int64_list.value[0]) if f[\"episode_id\"].int64_list.value else int(\n f[\"episode_id\"].bytes_list.value[0].decode(\"utf-8\")\n )\n\n assert len(screenshots_bytes) == len(widths) == len(heights), \"screenshot/width/height ๊ธธ์ด ๋ถ์ผ์น\"\n assert len(actions) == len(step_insts) == (len(screenshots_bytes) - 1), \\\n \"actions/step_instructions๋ screenshots-1๊ณผ ๊ฐ์์ผ ํจ\"\n\n return {\n \"episode_id\": episode_id,\n \"goal\": goal,\n \"screenshots\": screenshots_bytes,\n \"a11y\": a11y_bytes_list,\n \"widths\": widths,\n \"heights\": heights,\n \"actions\": actions,\n \"step_instructions\": step_insts,\n }\n\n# =========================\n# ์ก์
๋งคํ & ์ ํธ\n# =========================\ndef _center_xy(w: int, h: int) -> Tuple[int,int]:\n return (int(round(w/2)), int(round(h/2)))\n\ndef _norm_dir(d: Optional[str]) -> str:\n if not d: return \"down\"\n d = str(d).lower()\n if d in [\"up\",\"down\",\"left\",\"right\"]:\n return d\n if d in [\"u\",\"top\"]: return \"up\"\n if d in [\"d\",\"bottom\"]: return \"down\"\n if d in [\"l\"]: return \"left\"\n if d in [\"r\"]: return \"right\"\n return \"down\"\n\ndef map_action(\n action: Dict[str, Any],\n w: int,\n h: int,\n pts: List[Tuple[int,int]],\n) -> Optional[Dict[str, Any]]:\n \"\"\"\n ํ์ฉ ๋งคํ:\n click -> {\"type\": \"touch\", \"x\": <x>, \"y\": <y>}\n long_press -> {\"type\": \"long_touch\", \"x\": <x>, \"y\": <y>}\n input_text -> {\"type\": \"set_text\", \"text\": \"...\", \"x\": <x>, \"y\": <y>}\n scroll -> {\"type\": \"scroll\", \"direction\": \"up|down|left|right\", \"x\": <center_x>, \"y\": <center_y>}\n navigate_home -> {\"type\": \"press\", \"key\": \"home\"}\n navigate_back -> {\"type\": \"press\", \"key\": \"back\"}\n \"\"\"\n atype = (action.get(\"action_type\") or action.get(\"type\") or action.get(\"action\") or \"\").lower()\n x, y = (pts[0] if pts else _center_xy(w, h))\n\n if atype in [\"click\", \"tap\", \"press\", \"click_view\"]:\n return {\"type\": \"touch\", \"x\": x, \"y\": y}\n\n if atype in [\"long_press\", \"long_tap\", \"long_click\"]:\n return {\"type\": \"long_touch\", \"x\": x, \"y\": y}\n\n if atype in [\"input_text\", \"set_text\", \"type_text\", \"enter_text\", \"text\"]:\n text = action.get(\"text\") or action.get(\"input_text\") or action.get(\"value\") or \"\"\n return {\"type\": \"set_text\", \"text\": str(text), \"x\": x, \"y\": y}\n\n if atype in [\"scroll\", \"swipe\"]:\n if len(pts) >= 2:\n cx = (pts[0][0] + pts[1][0]) // 2\n cy = (pts[0][1] + pts[1][1]) // 2\n else:\n cx, cy = _center_xy(w, h)\n return {\"type\": \"scroll\", \"direction\": _norm_dir(action.get(\"direction\")), \"x\": cx, \"y\": cy}\n\n if atype in [\"navigate_home\", \"home\", \"press_home\"]:\n return {\"type\": \"press\", \"key\": \"home\"}\n\n if atype in [\"navigate_back\", \"back\", \"press_back\"]:\n return {\"type\": \"press\", \"key\": \"back\"}\n\n # ๊ทธ ์ธ(open_app, wait ๋ฑ) โ ์ ์ฅํ์ง ์์\n return None\n\ndef save_clean_image(img_bytes: bytes, episode_id: int, step_idx: int, base_dir: str = \"and_ctrl\") -> str:\n \"\"\"\n out_episode_{EP}_step_{STEP:03d}.png (์ค๋ฒ๋ ์ด ์์)\n \"\"\"\n Path(base_dir).mkdir(parents=True, exist_ok=True)\n fname = f\"out_episode_{episode_id}_step_{step_idx:03d}.png\"\n fpath = Path(base_dir) / fname\n Image.open(io.BytesIO(img_bytes)).convert(\"RGB\").save(fpath)\n # Return just the relative path from base_dir\n return f\"{base_dir}/{fname}\"\n\n# =========================\n# ๋ฉ์์ง JSON ๋ด๋ณด๋ด๊ธฐ\n# =========================\ndef export_messages(ds, limit_episodes: int = 5, out_json: str = \"and_ctrl.json\", image_dir: str = \"and_ctrl\"):\n \"\"\"\n ์ง์ ํ TFRecordDataset์์ ์ N๊ฐ ์ํผ์๋์ ์คํ
์ค\n ํ์ฉ ์ก์
๋ง ๋ชจ์ ์์ฒญ ํฌ๋งท์ผ๋ก and_ctrl.json ์ ์ฅ.\n \"\"\"\n all_items: List[Dict[str, Any]] = []\n ep_cnt = 0\n\n for raw in ds:\n ex = tf.train.Example()\n ex.ParseFromString(raw.numpy())\n ep = load_episode_from_example(ex)\n\n ep_id = ep[\"episode_id\"]\n for i, (action, inst) in enumerate(zip(ep[\"actions\"], ep[\"step_instructions\"])):\n w, h = ep[\"widths\"][i], ep[\"heights\"][i]\n img_bytes = ep[\"screenshots\"][i]\n pts = extract_points_from_action(action, w, h)\n mapped = map_action(action, w, h, pts)\n if not mapped:\n continue # ์คํต\n\n img_path = save_clean_image(img_bytes, ep_id, i, base_dir=image_dir)\n\n all_items.append({\n \"messages\": [\n {\"role\": \"user\", \"content\": f\"<image>\\n{inst}\"},\n # JSON์ด ์๋, ํ์ด์ฌ dict ๋ฌธ์์ด(single quote)๋ก ์ ์ฅ\n {\"role\": \"assistant\", \"content\": str(mapped)}\n ],\n \"images\": [img_path]\n })\n\n ep_cnt += 1\n if ep_cnt >= limit_episodes:\n break\n\n with open(out_json, \"w\", encoding=\"utf-8\") as f:\n json.dump(all_items, f, ensure_ascii=False, indent=2)\n\n print(f\"[DONE] episodes processed: {ep_cnt}, items saved: {len(all_items)} โ {out_json}\")\n\n# =========================\n# ์คํ ์ง์
์ \n# =========================\ndef main():\n # ํ์์ ๊ฒฝ๋ก ํจํด ์กฐ์ \n filenames = tf.io.gfile.glob('gs://gresearch/android_control/android_control*')\n ds = tf.data.TFRecordDataset(filenames, compression_type='GZIP')\n export_messages(ds, limit_episodes=50, out_json=\"and_ctrl.json\", image_dir=\"and_ctrl\")\n\nif __name__ == \"__main__\":\n main()"
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "code",
|
| 35 |
+
"execution_count": null,
|
| 36 |
+
"metadata": {
|
| 37 |
+
"colab": {
|
| 38 |
+
"base_uri": "https://localhost:8080/"
|
| 39 |
+
},
|
| 40 |
+
"id": "9wgmlG4CxlkL",
|
| 41 |
+
"outputId": "8dfce9bd-7003-4637-98ad-6843f2aeb9f9"
|
| 42 |
+
},
|
| 43 |
+
"outputs": [
|
| 44 |
+
{
|
| 45 |
+
"name": "stdout",
|
| 46 |
+
"output_type": "stream",
|
| 47 |
+
"text": [
|
| 48 |
+
"46.5 GiB gs://gresearch/android_control/android_control*\n"
|
| 49 |
+
]
|
| 50 |
+
}
|
| 51 |
+
],
|
| 52 |
+
"source": [
|
| 53 |
+
"!gsutil du -sh gs://gresearch/android_control/android_control*\n"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"cell_type": "markdown",
|
| 58 |
+
"metadata": {},
|
| 59 |
+
"source": [
|
| 60 |
+
"# Download Images and episodes"
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"cell_type": "code",
|
| 65 |
+
"execution_count": null,
|
| 66 |
+
"metadata": {
|
| 67 |
+
"id": "eP8n5YdK8Mns"
|
| 68 |
+
},
|
| 69 |
+
"outputs": [
|
| 70 |
+
{
|
| 71 |
+
"ename": "",
|
| 72 |
+
"evalue": "",
|
| 73 |
+
"output_type": "error",
|
| 74 |
+
"traceback": [
|
| 75 |
+
"\u001b[1;31mRunning cells with 'and_ctrl (Python 3.12.11)' requires the ipykernel package.\n",
|
| 76 |
+
"\u001b[1;31mInstall 'ipykernel' into the Python environment. \n",
|
| 77 |
+
"\u001b[1;31mCommand: '/home/work/kyochul/and_ctrl/bin/python -m pip install ipykernel -U --force-reinstall'"
|
| 78 |
+
]
|
| 79 |
+
}
|
| 80 |
+
],
|
| 81 |
+
"source": [
|
| 82 |
+
"import os"
|
| 83 |
+
]
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"cell_type": "code",
|
| 87 |
+
"execution_count": null,
|
| 88 |
+
"metadata": {},
|
| 89 |
+
"outputs": [],
|
| 90 |
+
"source": []
|
| 91 |
+
}
|
| 92 |
+
],
|
| 93 |
+
"metadata": {
|
| 94 |
+
"accelerator": "GPU",
|
| 95 |
+
"colab": {
|
| 96 |
+
"gpuType": "T4",
|
| 97 |
+
"provenance": []
|
| 98 |
+
},
|
| 99 |
+
"kernelspec": {
|
| 100 |
+
"display_name": "and_ctrl",
|
| 101 |
+
"language": "python",
|
| 102 |
+
"name": "python3"
|
| 103 |
+
},
|
| 104 |
+
"language_info": {
|
| 105 |
+
"codemirror_mode": {
|
| 106 |
+
"name": "ipython",
|
| 107 |
+
"version": 3
|
| 108 |
+
},
|
| 109 |
+
"file_extension": ".py",
|
| 110 |
+
"mimetype": "text/x-python",
|
| 111 |
+
"name": "python",
|
| 112 |
+
"nbconvert_exporter": "python",
|
| 113 |
+
"pygments_lexer": "ipython3",
|
| 114 |
+
"version": "3.12.11"
|
| 115 |
+
}
|
| 116 |
+
},
|
| 117 |
+
"nbformat": 4,
|
| 118 |
+
"nbformat_minor": 0
|
| 119 |
+
}
|
episode_goals.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|