|
|
import argparse
|
|
|
import csv
|
|
|
import json
|
|
|
import os
|
|
|
from datetime import datetime
|
|
|
|
|
|
def load_csv(file_path):
|
|
|
try:
|
|
|
rows = []
|
|
|
with open(file_path, "r", encoding="utf-8") as f:
|
|
|
reader = csv.reader(f)
|
|
|
for row in reader:
|
|
|
rows.append(row)
|
|
|
return rows, None
|
|
|
except Exception as e:
|
|
|
return [], str(e)
|
|
|
|
|
|
|
|
|
def evaluate(pred_file, truth_file):
|
|
|
pred_rows, pred_err = load_csv(pred_file)
|
|
|
truth_rows, truth_err = load_csv(truth_file)
|
|
|
|
|
|
process_ok = True
|
|
|
comments = []
|
|
|
|
|
|
|
|
|
if pred_err:
|
|
|
comments.append(f"[Prediction file read failed] {pred_err}")
|
|
|
process_ok = False
|
|
|
if truth_err:
|
|
|
comments.append(f"[GT file read failed] {truth_err}")
|
|
|
process_ok = False
|
|
|
|
|
|
if not process_ok:
|
|
|
return {
|
|
|
"Process": False,
|
|
|
"Result": False,
|
|
|
"TimePoint": datetime.now().isoformat(),
|
|
|
"comments": "\n".join(comments)
|
|
|
}
|
|
|
|
|
|
|
|
|
if not pred_rows or not truth_rows:
|
|
|
comments.append("⚠️ No data rows found!")
|
|
|
return {
|
|
|
"Process": True,
|
|
|
"Result": False,
|
|
|
"TimePoint": datetime.now().isoformat(),
|
|
|
"comments": "\n".join(comments)
|
|
|
}
|
|
|
|
|
|
|
|
|
pred_header = pred_rows[0]
|
|
|
truth_header = truth_rows[0]
|
|
|
|
|
|
|
|
|
if pred_header != truth_header:
|
|
|
comments.append(f"⚠️ Column names or order mismatch! Prediction columns: {pred_header}, GT columns: {truth_header}")
|
|
|
else:
|
|
|
comments.append("✅ Column names and order match.")
|
|
|
|
|
|
|
|
|
pred_data = pred_rows[1:]
|
|
|
truth_data = truth_rows[1:]
|
|
|
|
|
|
total_rows = min(len(pred_data), len(truth_data))
|
|
|
if total_rows == 0:
|
|
|
comments.append("⚠️ No data rows for comparison!")
|
|
|
return {
|
|
|
"Process": True,
|
|
|
"Result": False,
|
|
|
"TimePoint": datetime.now().isoformat(),
|
|
|
"comments": "\n".join(comments)
|
|
|
}
|
|
|
|
|
|
|
|
|
match_count = 0
|
|
|
total_cells = 0
|
|
|
for i in range(total_rows):
|
|
|
pr = pred_data[i]
|
|
|
tr = truth_data[i]
|
|
|
min_cols = min(len(pr), len(tr))
|
|
|
for j in range(min_cols):
|
|
|
total_cells += 1
|
|
|
if pr[j] == tr[j]:
|
|
|
match_count += 1
|
|
|
|
|
|
total_cells += abs(len(pr) - len(tr))
|
|
|
|
|
|
|
|
|
match_rate = (match_count / total_cells) * 100 if total_cells else 0
|
|
|
passed = match_rate >= 75
|
|
|
comments.append(f"Overall cell-by-cell match rate: {match_rate:.2f}% (threshold=75%)")
|
|
|
if passed:
|
|
|
comments.append("✅ Test passed!")
|
|
|
else:
|
|
|
comments.append("❌ Test failed!")
|
|
|
|
|
|
return {
|
|
|
"Process": True,
|
|
|
"Result": passed,
|
|
|
"TimePoint": datetime.now().isoformat(),
|
|
|
"comments": "\n".join(comments)
|
|
|
}
|
|
|
|
|
|
|
|
|
def append_result_to_jsonl(result_path, result_dict):
|
|
|
os.makedirs(os.path.dirname(result_path) or '.', exist_ok=True)
|
|
|
with open(result_path, "a", encoding="utf-8") as f:
|
|
|
json.dump(result_dict, f, ensure_ascii=False, default=str)
|
|
|
f.write("\n")
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
parser = argparse.ArgumentParser()
|
|
|
parser.add_argument("--output", type=str, required=True, help="Path to extracted complete table")
|
|
|
parser.add_argument("--groundtruth", type=str, required=True, help="Path to standard complete table")
|
|
|
parser.add_argument("--result", type=str, required=True, help="Path to output JSONL result file")
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
result_dict = evaluate(args.output, args.groundtruth)
|
|
|
append_result_to_jsonl(args.result, result_dict) |