Nicole-Yi's picture
Upload 103 files
4a5e815 verified
import argparse
import cv2
import numpy as np
from skimage.metrics import structural_similarity as ssim
import torch
import torchvision.models as models
import torchvision.transforms as transforms
from scipy.linalg import sqrtm
import os
import json
from datetime import datetime
def extract_frames(video_path, max_frames=100):
"""Extract frames from video, limiting maximum frames for efficiency"""
cap = cv2.VideoCapture(video_path)
frames = []
count = 0
while cap.isOpened() and count < max_frames:
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
count += 1
cap.release()
return frames
def compute_ssim(input_frames, output_frames):
"""Calculate average SSIM between input and output frames"""
ssim_scores = []
for in_frame, out_frame in zip(input_frames, output_frames):
# Resize frames if dimensions don't match
min_shape = (min(in_frame.shape[0], out_frame.shape[0]),
min(in_frame.shape[1], out_frame.shape[1]))
in_frame = cv2.resize(in_frame, min_shape[::-1])
out_frame = cv2.resize(out_frame, min_shape[::-1])
# Convert to grayscale for SSIM calculation
in_gray = cv2.cvtColor(in_frame, cv2.COLOR_RGB2GRAY)
out_gray = cv2.cvtColor(out_frame, cv2.COLOR_RGB2GRAY)
score = ssim(in_gray, out_gray, data_range=255)
ssim_scores.append(score)
return np.mean(ssim_scores) if ssim_scores else 0.0
def get_inception_features(frames, model, transform, device):
"""Extract Inception V3 features for FID calculation"""
features = []
for frame in frames:
img = cv2.resize(frame, (299, 299))
img = transform(img).unsqueeze(0).to(device)
with torch.no_grad():
feat = model(img).squeeze().cpu().numpy()
features.append(feat)
return np.array(features)
def compute_fid(input_frames, output_frames):
"""Calculate FID between input and output frames using Inception V3"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
inception = models.inception_v3(pretrained=True, transform_input=False).eval().to(device)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
input_features = get_inception_features(input_frames, inception, transform, device)
output_features = get_inception_features(output_frames, inception, transform, device)
# Calculate mean and covariance
mu1, sigma1 = np.mean(input_features, axis=0), np.cov(input_features, rowvar=False)
mu2, sigma2 = np.mean(output_features, axis=0), np.cov(output_features, rowvar=False)
# Calculate FID
diff = mu1 - mu2
covmean = sqrtm(sigma1.dot(sigma2))
if np.iscomplexobj(covmean):
covmean = covmean.real
fid = diff.dot(diff) + np.trace(sigma1 + sigma2 - 2 * covmean)
return fid
def evaluate_animeganv3(input_video, output_video, ssim_threshold=0.7, fid_threshold=400):
"""Evaluate AnimeGANv3 stylization effect using SSIM and FID"""
messages = []
messages.append(f"Evaluating videos:\nInput video: {input_video}\nOutput video: {output_video}")
# Extract frames
input_frames = extract_frames(input_video)
output_frames = extract_frames(output_video)
if len(input_frames) == 0 or len(output_frames) == 0:
messages.append("Error: Failed to extract frames from one or both videos.")
return False, "\n".join(messages)
if len(input_frames) != len(output_frames):
messages.append("Warning: Input and output videos have different frame counts.")
min_frames = min(len(input_frames), len(output_frames))
input_frames = input_frames[:min_frames]
output_frames = output_frames[:min_frames]
# Calculate SSIM
avg_ssim = compute_ssim(input_frames, output_frames)
messages.append(f"Average SSIM: {avg_ssim:.4f}")
# Calculate FID
fid_score = compute_fid(input_frames, output_frames)
messages.append(f"FID score: {fid_score:.2f}")
# Compare with thresholds
ssim_pass = avg_ssim >= ssim_threshold
fid_pass = fid_score <= fid_threshold
success = ssim_pass and fid_pass
result_message = f"\nEvaluation results:\n"
result_message += f"SSIM (≥ {ssim_threshold}): {'Pass' if ssim_pass else 'Fail'} ({avg_ssim:.4f})\n"
result_message += f"FID (≤ {fid_threshold}): {'Pass' if fid_pass else 'Fail'} ({fid_score:.2f})\n"
result_message += f"Overall success: {'Yes' if success else 'No'}"
messages.append(result_message)
return success, "\n".join(messages)
def is_valid_video_file(file_path):
"""Check if file exists, is non-empty and has valid video format (.mp4)"""
if not os.path.exists(file_path):
return False, f"File {file_path} does not exist."
if os.path.getsize(file_path) == 0:
return False, f"File {file_path} is empty."
if not file_path.lower().endswith('.mp4'):
return False, f"File {file_path} has incorrect format, only .mp4 supported."
return True, ""
def main():
parser = argparse.ArgumentParser(description="Evaluate AnimeGANv3 video stylization effect")
parser.add_argument("-i", "--groundtruth", required=True, help="Input video file path")
parser.add_argument("-o", "--output", required=True, help="Output video file path")
parser.add_argument("--ssim_threshold", type=float, default=0.7, help="SSIM success threshold")
parser.add_argument("--fid_threshold", type=float, default=400.0, help="FID success threshold")
parser.add_argument("--result", help="JSONL file path to save results")
args = parser.parse_args()
# Collect all output messages
messages = []
success = False
process_valid = True
# Validate input files
input_valid, input_error = is_valid_video_file(args.groundtruth)
output_valid, output_error = is_valid_video_file(args.output)
if not input_valid:
messages.append(input_error)
process_valid = False
if not output_valid:
messages.append(output_error)
process_valid = False
# If inputs are valid, run evaluation
if process_valid:
success, eval_message = evaluate_animeganv3(
args.groundtruth,
args.output,
args.ssim_threshold,
args.fid_threshold
)
messages.append(eval_message)
else:
messages.append("Evaluation not run due to input file validation failure.")
# Print all messages
print("\n".join(messages))
# If --result is specified, save to JSONL
# Modified result saving section in main() function:
if args.result:
result_entry = {
"Process": process_valid,
"Result": success,
"TimePoint": datetime.now().strftime("%Y-%m-%dT%H:%M:%S"),
"comments": "\n".join(messages)
}
try:
os.makedirs(os.path.dirname(args.result) or '.', exist_ok=True)
with open(args.result, 'a', encoding='utf-8') as f:
json_line = json.dumps(result_entry, ensure_ascii=False, default=str)
f.write(json_line + '\n') # Ensure newline append
except Exception as e:
print(f"Error: Failed to save results to {args.result}, reason: {str(e)}")
if __name__ == "__main__":
main()