Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Job manager crashed while running this job (missing heartbeats).
Error code:   JobManagerCrashedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

image
image
label
class label
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
End of preview.

Comprehensive Benchmarking of YOLOv11 for Peripheral Blood Cell Detection

arXiv YOLOv11 Python Dataset

πŸ“– Overview

This repository contains the official implementation for "Comprehensive Benchmarking of YOLOv11 Architectitectures for Scalable and Granular Peripheral Blood Cell Detection" (submitted to ArXiv). Our research provides a rigorous evaluation of YOLOv11 models for automated detection and classification of 12 peripheral blood cell types using a large-scale annotated dataset.

Key Highlights:

  • βœ… Comprehensive evaluation of 5 YOLOv11 variants (Nano to XLarge)
  • βœ… Large-scale dataset: 16,891 images, 298,850 annotated cells across 12 classes
  • βœ… YOLOv11-Medium achieves optimal balance: [email protected] of 0.934
  • βœ… Publicly released dataset for advancing hematology research

πŸ› οΈ Installation & Usage

Prerequisites

Install required packages

pip install ultralytics torch torchvision opencv-python pandas numpy matplotlib

πŸ“ˆ Results & Recommendations

Key Findings

  • YOLOv11-Medium achieves the best accuracy-efficiency trade-off
  • 8:1:1 split provides better performance across all models
  • Smaller models benefit more from additional training data
  • Diminishing returns beyond Medium variant

Clinical Recommendation

For real-world hematology applications, we recommend:

  • Model: YOLOv11-Medium
  • Data Split: 8:1:1
  • Performance: 93.4% [email protected] with practical computational requirements

🎯 Performance Highlights

  • High Precision: 92.6% precision for rare cell detection
  • Excellent Recall: 93.9% recall minimizing false negatives
  • Robust Performance: Consistent across all 12 cell classes
  • Clinical Relevance: Suitable for integration into diagnostic workflows

Quick Access:

Citation

If you find our work or dataset useful, please consider citing our preprint:

@misc{ali2025comprehensivebenchmarkingyolov11architectures,
      title={Comprehensive Benchmarking of YOLOv11 Architectures for Scalable and Granular Peripheral Blood Cell Detection}, 
      author={Mohamad Abou Ali and Mariam Abdulfattah and Baraah Al Hussein and Fadi Dornaika and Ali Cherry and Mohamad Hajj-Hassan and Lara Hamawy},
      year={2025},
      eprint={2509.24595},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2509.24595}, 
}



Downloads last month
9