|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """This loads the UnpredicTable-msdn.microsoft.com dataset.""" | 
					
						
						|  |  | 
					
						
						|  | import json | 
					
						
						|  | import os | 
					
						
						|  | import pandas as pd | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @misc{chan2022few, | 
					
						
						|  | author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan}, | 
					
						
						|  | title = {Few-shot Adaptation Works with UnpredicTable Data}, | 
					
						
						|  | publisher={arXiv}, | 
					
						
						|  | year = {2022}, | 
					
						
						|  | url = {https://arxiv.org/abs/2208.01009} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance. For more details please see the accompanying dataset card. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "https://ethanperez.net/unpredictable" | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = "Apache 2.0" | 
					
						
						|  |  | 
					
						
						|  | _URL = "https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com/resolve/main/data/unpredictable_msdn-microsoft-com.jsonl" | 
					
						
						|  |  | 
					
						
						|  | logger = datasets.logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class UnpredicTable(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """ | 
					
						
						|  | The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance. For more details please see the accompanying dataset card. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | VERSION = datasets.Version("1.0.0") | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "task": datasets.Value("string"), | 
					
						
						|  | "input": datasets.Value("string"), | 
					
						
						|  | "output": datasets.Value("string"), | 
					
						
						|  | "options": datasets.Sequence([datasets.Value("string")]), | 
					
						
						|  | "pageTitle": datasets.Value("string"), | 
					
						
						|  | "outputColName": datasets.Value("string"), | 
					
						
						|  | "url": datasets.Value("string"), | 
					
						
						|  | "wdcFile": datasets.Value("string") | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=features, | 
					
						
						|  | license=_LICENSE, | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | """Returns SplitGenerators.""" | 
					
						
						|  | data_dir = dl_manager.download_and_extract(_URL) | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TRAIN, | 
					
						
						|  | gen_kwargs={"filepath": data_dir}, | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, filepath): | 
					
						
						|  | """Yields examples.""" | 
					
						
						|  | with open(filepath, encoding="utf-8") as f: | 
					
						
						|  | for i, row in enumerate(f): | 
					
						
						|  | data = json.loads(row) | 
					
						
						|  | key = f"{data['task']}_{i}" | 
					
						
						|  | yield key, { | 
					
						
						|  | "task": data["task"], | 
					
						
						|  | "input": data["input"], | 
					
						
						|  | "output": data["output"], | 
					
						
						|  | "options": data["options"], | 
					
						
						|  | "pageTitle": data["pageTitle"], | 
					
						
						|  | "outputColName": data["outputColName"], | 
					
						
						|  | "url": data["url"], | 
					
						
						|  | "wdcFile": data["wdcFile"], | 
					
						
						|  | } | 
					
						
						|  |  |