| /* | |
| ** 2005 May 23 | |
| ** | |
| ** The author disclaims copyright to this source code. In place of | |
| ** a legal notice, here is a blessing: | |
| ** | |
| ** May you do good and not evil. | |
| ** May you find forgiveness for yourself and forgive others. | |
| ** May you share freely, never taking more than you give. | |
| ** | |
| ************************************************************************* | |
| ** | |
| ** This file contains functions used to access the internal hash tables | |
| ** of user defined functions and collation sequences. | |
| */ | |
| /* | |
| ** Invoke the 'collation needed' callback to request a collation sequence | |
| ** in the encoding enc of name zName, length nName. | |
| */ | |
| static void callCollNeeded(sqlite3 *db, int enc, const char *zName){ | |
| assert( !db->xCollNeeded || !db->xCollNeeded16 ); | |
| if( db->xCollNeeded ){ | |
| char *zExternal = sqlite3DbStrDup(db, zName); | |
| if( !zExternal ) return; | |
| db->xCollNeeded(db->pCollNeededArg, db, enc, zExternal); | |
| sqlite3DbFree(db, zExternal); | |
| } | |
| if( db->xCollNeeded16 ){ | |
| char const *zExternal; | |
| sqlite3_value *pTmp = sqlite3ValueNew(db); | |
| sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC); | |
| zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE); | |
| if( zExternal ){ | |
| db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal); | |
| } | |
| sqlite3ValueFree(pTmp); | |
| } | |
| } | |
| /* | |
| ** This routine is called if the collation factory fails to deliver a | |
| ** collation function in the best encoding but there may be other versions | |
| ** of this collation function (for other text encodings) available. Use one | |
| ** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if | |
| ** possible. | |
| */ | |
| static int synthCollSeq(sqlite3 *db, CollSeq *pColl){ | |
| CollSeq *pColl2; | |
| char *z = pColl->zName; | |
| int i; | |
| static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 }; | |
| for(i=0; i<3; i++){ | |
| pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, 0); | |
| if( pColl2->xCmp!=0 ){ | |
| memcpy(pColl, pColl2, sizeof(CollSeq)); | |
| pColl->xDel = 0; /* Do not copy the destructor */ | |
| return SQLITE_OK; | |
| } | |
| } | |
| return SQLITE_ERROR; | |
| } | |
| /* | |
| ** This routine is called on a collation sequence before it is used to | |
| ** check that it is defined. An undefined collation sequence exists when | |
| ** a database is loaded that contains references to collation sequences | |
| ** that have not been defined by sqlite3_create_collation() etc. | |
| ** | |
| ** If required, this routine calls the 'collation needed' callback to | |
| ** request a definition of the collating sequence. If this doesn't work, | |
| ** an equivalent collating sequence that uses a text encoding different | |
| ** from the main database is substituted, if one is available. | |
| */ | |
| int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){ | |
| if( pColl && pColl->xCmp==0 ){ | |
| const char *zName = pColl->zName; | |
| sqlite3 *db = pParse->db; | |
| CollSeq *p = sqlite3GetCollSeq(pParse, ENC(db), pColl, zName); | |
| if( !p ){ | |
| return SQLITE_ERROR; | |
| } | |
| assert( p==pColl ); | |
| } | |
| return SQLITE_OK; | |
| } | |
| /* | |
| ** Locate and return an entry from the db.aCollSeq hash table. If the entry | |
| ** specified by zName and nName is not found and parameter 'create' is | |
| ** true, then create a new entry. Otherwise return NULL. | |
| ** | |
| ** Each pointer stored in the sqlite3.aCollSeq hash table contains an | |
| ** array of three CollSeq structures. The first is the collation sequence | |
| ** preferred for UTF-8, the second UTF-16le, and the third UTF-16be. | |
| ** | |
| ** Stored immediately after the three collation sequences is a copy of | |
| ** the collation sequence name. A pointer to this string is stored in | |
| ** each collation sequence structure. | |
| */ | |
| static CollSeq *findCollSeqEntry( | |
| sqlite3 *db, /* Database connection */ | |
| const char *zName, /* Name of the collating sequence */ | |
| int create /* Create a new entry if true */ | |
| ){ | |
| CollSeq *pColl; | |
| pColl = sqlite3HashFind(&db->aCollSeq, zName); | |
| if( 0==pColl && create ){ | |
| int nName = sqlite3Strlen30(zName) + 1; | |
| pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName); | |
| if( pColl ){ | |
| CollSeq *pDel = 0; | |
| pColl[0].zName = (char*)&pColl[3]; | |
| pColl[0].enc = SQLITE_UTF8; | |
| pColl[1].zName = (char*)&pColl[3]; | |
| pColl[1].enc = SQLITE_UTF16LE; | |
| pColl[2].zName = (char*)&pColl[3]; | |
| pColl[2].enc = SQLITE_UTF16BE; | |
| memcpy(pColl[0].zName, zName, nName); | |
| pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, pColl); | |
| /* If a malloc() failure occurred in sqlite3HashInsert(), it will | |
| ** return the pColl pointer to be deleted (because it wasn't added | |
| ** to the hash table). | |
| */ | |
| assert( pDel==0 || pDel==pColl ); | |
| if( pDel!=0 ){ | |
| sqlite3OomFault(db); | |
| sqlite3DbFree(db, pDel); | |
| pColl = 0; | |
| } | |
| } | |
| } | |
| return pColl; | |
| } | |
| /* | |
| ** Parameter zName points to a UTF-8 encoded string nName bytes long. | |
| ** Return the CollSeq* pointer for the collation sequence named zName | |
| ** for the encoding 'enc' from the database 'db'. | |
| ** | |
| ** If the entry specified is not found and 'create' is true, then create a | |
| ** new entry. Otherwise return NULL. | |
| ** | |
| ** A separate function sqlite3LocateCollSeq() is a wrapper around | |
| ** this routine. sqlite3LocateCollSeq() invokes the collation factory | |
| ** if necessary and generates an error message if the collating sequence | |
| ** cannot be found. | |
| ** | |
| ** See also: sqlite3LocateCollSeq(), sqlite3GetCollSeq() | |
| */ | |
| CollSeq *sqlite3FindCollSeq( | |
| sqlite3 *db, /* Database connection to search */ | |
| u8 enc, /* Desired text encoding */ | |
| const char *zName, /* Name of the collating sequence. Might be NULL */ | |
| int create /* True to create CollSeq if doesn't already exist */ | |
| ){ | |
| CollSeq *pColl; | |
| assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); | |
| assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE ); | |
| if( zName ){ | |
| pColl = findCollSeqEntry(db, zName, create); | |
| if( pColl ) pColl += enc-1; | |
| }else{ | |
| pColl = db->pDfltColl; | |
| } | |
| return pColl; | |
| } | |
| /* | |
| ** Change the text encoding for a database connection. This means that | |
| ** the pDfltColl must change as well. | |
| */ | |
| void sqlite3SetTextEncoding(sqlite3 *db, u8 enc){ | |
| assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); | |
| db->enc = enc; | |
| /* EVIDENCE-OF: R-08308-17224 The default collating function for all | |
| ** strings is BINARY. | |
| */ | |
| db->pDfltColl = sqlite3FindCollSeq(db, enc, sqlite3StrBINARY, 0); | |
| sqlite3ExpirePreparedStatements(db, 1); | |
| } | |
| /* | |
| ** This function is responsible for invoking the collation factory callback | |
| ** or substituting a collation sequence of a different encoding when the | |
| ** requested collation sequence is not available in the desired encoding. | |
| ** | |
| ** If it is not NULL, then pColl must point to the database native encoding | |
| ** collation sequence with name zName, length nName. | |
| ** | |
| ** The return value is either the collation sequence to be used in database | |
| ** db for collation type name zName, length nName, or NULL, if no collation | |
| ** sequence can be found. If no collation is found, leave an error message. | |
| ** | |
| ** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq() | |
| */ | |
| CollSeq *sqlite3GetCollSeq( | |
| Parse *pParse, /* Parsing context */ | |
| u8 enc, /* The desired encoding for the collating sequence */ | |
| CollSeq *pColl, /* Collating sequence with native encoding, or NULL */ | |
| const char *zName /* Collating sequence name */ | |
| ){ | |
| CollSeq *p; | |
| sqlite3 *db = pParse->db; | |
| p = pColl; | |
| if( !p ){ | |
| p = sqlite3FindCollSeq(db, enc, zName, 0); | |
| } | |
| if( !p || !p->xCmp ){ | |
| /* No collation sequence of this type for this encoding is registered. | |
| ** Call the collation factory to see if it can supply us with one. | |
| */ | |
| callCollNeeded(db, enc, zName); | |
| p = sqlite3FindCollSeq(db, enc, zName, 0); | |
| } | |
| if( p && !p->xCmp && synthCollSeq(db, p) ){ | |
| p = 0; | |
| } | |
| assert( !p || p->xCmp ); | |
| if( p==0 ){ | |
| sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); | |
| pParse->rc = SQLITE_ERROR_MISSING_COLLSEQ; | |
| } | |
| return p; | |
| } | |
| /* | |
| ** This function returns the collation sequence for database native text | |
| ** encoding identified by the string zName. | |
| ** | |
| ** If the requested collation sequence is not available, or not available | |
| ** in the database native encoding, the collation factory is invoked to | |
| ** request it. If the collation factory does not supply such a sequence, | |
| ** and the sequence is available in another text encoding, then that is | |
| ** returned instead. | |
| ** | |
| ** If no versions of the requested collations sequence are available, or | |
| ** another error occurs, NULL is returned and an error message written into | |
| ** pParse. | |
| ** | |
| ** This routine is a wrapper around sqlite3FindCollSeq(). This routine | |
| ** invokes the collation factory if the named collation cannot be found | |
| ** and generates an error message. | |
| ** | |
| ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() | |
| */ | |
| CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ | |
| sqlite3 *db = pParse->db; | |
| u8 enc = ENC(db); | |
| u8 initbusy = db->init.busy; | |
| CollSeq *pColl; | |
| pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); | |
| if( !initbusy && (!pColl || !pColl->xCmp) ){ | |
| pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); | |
| } | |
| return pColl; | |
| } | |
| /* During the search for the best function definition, this procedure | |
| ** is called to test how well the function passed as the first argument | |
| ** matches the request for a function with nArg arguments in a system | |
| ** that uses encoding enc. The value returned indicates how well the | |
| ** request is matched. A higher value indicates a better match. | |
| ** | |
| ** If nArg is -1 that means to only return a match (non-zero) if p->nArg | |
| ** is also -1. In other words, we are searching for a function that | |
| ** takes a variable number of arguments. | |
| ** | |
| ** If nArg is -2 that means that we are searching for any function | |
| ** regardless of the number of arguments it uses, so return a positive | |
| ** match score for any | |
| ** | |
| ** The returned value is always between 0 and 6, as follows: | |
| ** | |
| ** 0: Not a match. | |
| ** 1: UTF8/16 conversion required and function takes any number of arguments. | |
| ** 2: UTF16 byte order change required and function takes any number of args. | |
| ** 3: encoding matches and function takes any number of arguments | |
| ** 4: UTF8/16 conversion required - argument count matches exactly | |
| ** 5: UTF16 byte order conversion required - argument count matches exactly | |
| ** 6: Perfect match: encoding and argument count match exactly. | |
| ** | |
| ** If nArg==(-2) then any function with a non-null xSFunc is | |
| ** a perfect match and any function with xSFunc NULL is | |
| ** a non-match. | |
| */ | |
| static int matchQuality( | |
| FuncDef *p, /* The function we are evaluating for match quality */ | |
| int nArg, /* Desired number of arguments. (-1)==any */ | |
| u8 enc /* Desired text encoding */ | |
| ){ | |
| int match; | |
| assert( p->nArg>=-1 ); | |
| /* Wrong number of arguments means "no match" */ | |
| if( p->nArg!=nArg ){ | |
| if( nArg==(-2) ) return (p->xSFunc==0) ? 0 : FUNC_PERFECT_MATCH; | |
| if( p->nArg>=0 ) return 0; | |
| } | |
| /* Give a better score to a function with a specific number of arguments | |
| ** than to function that accepts any number of arguments. */ | |
| if( p->nArg==nArg ){ | |
| match = 4; | |
| }else{ | |
| match = 1; | |
| } | |
| /* Bonus points if the text encoding matches */ | |
| if( enc==(p->funcFlags & SQLITE_FUNC_ENCMASK) ){ | |
| match += 2; /* Exact encoding match */ | |
| }else if( (enc & p->funcFlags & 2)!=0 ){ | |
| match += 1; /* Both are UTF16, but with different byte orders */ | |
| } | |
| return match; | |
| } | |
| /* | |
| ** Search a FuncDefHash for a function with the given name. Return | |
| ** a pointer to the matching FuncDef if found, or 0 if there is no match. | |
| */ | |
| FuncDef *sqlite3FunctionSearch( | |
| int h, /* Hash of the name */ | |
| const char *zFunc /* Name of function */ | |
| ){ | |
| FuncDef *p; | |
| for(p=sqlite3BuiltinFunctions.a[h]; p; p=p->u.pHash){ | |
| assert( p->funcFlags & SQLITE_FUNC_BUILTIN ); | |
| if( sqlite3StrICmp(p->zName, zFunc)==0 ){ | |
| return p; | |
| } | |
| } | |
| return 0; | |
| } | |
| /* | |
| ** Insert a new FuncDef into a FuncDefHash hash table. | |
| */ | |
| void sqlite3InsertBuiltinFuncs( | |
| FuncDef *aDef, /* List of global functions to be inserted */ | |
| int nDef /* Length of the apDef[] list */ | |
| ){ | |
| int i; | |
| for(i=0; i<nDef; i++){ | |
| FuncDef *pOther; | |
| const char *zName = aDef[i].zName; | |
| int nName = sqlite3Strlen30(zName); | |
| int h = SQLITE_FUNC_HASH(zName[0], nName); | |
| assert( aDef[i].funcFlags & SQLITE_FUNC_BUILTIN ); | |
| pOther = sqlite3FunctionSearch(h, zName); | |
| if( pOther ){ | |
| assert( pOther!=&aDef[i] && pOther->pNext!=&aDef[i] ); | |
| aDef[i].pNext = pOther->pNext; | |
| pOther->pNext = &aDef[i]; | |
| }else{ | |
| aDef[i].pNext = 0; | |
| aDef[i].u.pHash = sqlite3BuiltinFunctions.a[h]; | |
| sqlite3BuiltinFunctions.a[h] = &aDef[i]; | |
| } | |
| } | |
| } | |
| /* | |
| ** Locate a user function given a name, a number of arguments and a flag | |
| ** indicating whether the function prefers UTF-16 over UTF-8. Return a | |
| ** pointer to the FuncDef structure that defines that function, or return | |
| ** NULL if the function does not exist. | |
| ** | |
| ** If the createFlag argument is true, then a new (blank) FuncDef | |
| ** structure is created and liked into the "db" structure if a | |
| ** no matching function previously existed. | |
| ** | |
| ** If nArg is -2, then the first valid function found is returned. A | |
| ** function is valid if xSFunc is non-zero. The nArg==(-2) | |
| ** case is used to see if zName is a valid function name for some number | |
| ** of arguments. If nArg is -2, then createFlag must be 0. | |
| ** | |
| ** If createFlag is false, then a function with the required name and | |
| ** number of arguments may be returned even if the eTextRep flag does not | |
| ** match that requested. | |
| */ | |
| FuncDef *sqlite3FindFunction( | |
| sqlite3 *db, /* An open database */ | |
| const char *zName, /* Name of the function. zero-terminated */ | |
| int nArg, /* Number of arguments. -1 means any number */ | |
| u8 enc, /* Preferred text encoding */ | |
| u8 createFlag /* Create new entry if true and does not otherwise exist */ | |
| ){ | |
| FuncDef *p; /* Iterator variable */ | |
| FuncDef *pBest = 0; /* Best match found so far */ | |
| int bestScore = 0; /* Score of best match */ | |
| int h; /* Hash value */ | |
| int nName; /* Length of the name */ | |
| assert( nArg>=(-2) ); | |
| assert( nArg>=(-1) || createFlag==0 ); | |
| nName = sqlite3Strlen30(zName); | |
| /* First search for a match amongst the application-defined functions. | |
| */ | |
| p = (FuncDef*)sqlite3HashFind(&db->aFunc, zName); | |
| while( p ){ | |
| int score = matchQuality(p, nArg, enc); | |
| if( score>bestScore ){ | |
| pBest = p; | |
| bestScore = score; | |
| } | |
| p = p->pNext; | |
| } | |
| /* If no match is found, search the built-in functions. | |
| ** | |
| ** If the DBFLAG_PreferBuiltin flag is set, then search the built-in | |
| ** functions even if a prior app-defined function was found. And give | |
| ** priority to built-in functions. | |
| ** | |
| ** Except, if createFlag is true, that means that we are trying to | |
| ** install a new function. Whatever FuncDef structure is returned it will | |
| ** have fields overwritten with new information appropriate for the | |
| ** new function. But the FuncDefs for built-in functions are read-only. | |
| ** So we must not search for built-ins when creating a new function. | |
| */ | |
| if( !createFlag && (pBest==0 || (db->mDbFlags & DBFLAG_PreferBuiltin)!=0) ){ | |
| bestScore = 0; | |
| h = SQLITE_FUNC_HASH(sqlite3UpperToLower[(u8)zName[0]], nName); | |
| p = sqlite3FunctionSearch(h, zName); | |
| while( p ){ | |
| int score = matchQuality(p, nArg, enc); | |
| if( score>bestScore ){ | |
| pBest = p; | |
| bestScore = score; | |
| } | |
| p = p->pNext; | |
| } | |
| } | |
| /* If the createFlag parameter is true and the search did not reveal an | |
| ** exact match for the name, number of arguments and encoding, then add a | |
| ** new entry to the hash table and return it. | |
| */ | |
| if( createFlag && bestScore<FUNC_PERFECT_MATCH && | |
| (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){ | |
| FuncDef *pOther; | |
| u8 *z; | |
| pBest->zName = (const char*)&pBest[1]; | |
| pBest->nArg = (u16)nArg; | |
| pBest->funcFlags = enc; | |
| memcpy((char*)&pBest[1], zName, nName+1); | |
| for(z=(u8*)pBest->zName; *z; z++) *z = sqlite3UpperToLower[*z]; | |
| pOther = (FuncDef*)sqlite3HashInsert(&db->aFunc, pBest->zName, pBest); | |
| if( pOther==pBest ){ | |
| sqlite3DbFree(db, pBest); | |
| sqlite3OomFault(db); | |
| return 0; | |
| }else{ | |
| pBest->pNext = pOther; | |
| } | |
| } | |
| if( pBest && (pBest->xSFunc || createFlag) ){ | |
| return pBest; | |
| } | |
| return 0; | |
| } | |
| /* | |
| ** Free all resources held by the schema structure. The void* argument points | |
| ** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the | |
| ** pointer itself, it just cleans up subsidiary resources (i.e. the contents | |
| ** of the schema hash tables). | |
| ** | |
| ** The Schema.cache_size variable is not cleared. | |
| */ | |
| void sqlite3SchemaClear(void *p){ | |
| Hash temp1; | |
| Hash temp2; | |
| HashElem *pElem; | |
| Schema *pSchema = (Schema *)p; | |
| sqlite3 xdb; | |
| memset(&xdb, 0, sizeof(xdb)); | |
| temp1 = pSchema->tblHash; | |
| temp2 = pSchema->trigHash; | |
| sqlite3HashInit(&pSchema->trigHash); | |
| sqlite3HashClear(&pSchema->idxHash); | |
| for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ | |
| sqlite3DeleteTrigger(&xdb, (Trigger*)sqliteHashData(pElem)); | |
| } | |
| sqlite3HashClear(&temp2); | |
| sqlite3HashInit(&pSchema->tblHash); | |
| for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ | |
| Table *pTab = sqliteHashData(pElem); | |
| sqlite3DeleteTable(&xdb, pTab); | |
| } | |
| sqlite3HashClear(&temp1); | |
| sqlite3HashClear(&pSchema->fkeyHash); | |
| pSchema->pSeqTab = 0; | |
| if( pSchema->schemaFlags & DB_SchemaLoaded ){ | |
| pSchema->iGeneration++; | |
| } | |
| pSchema->schemaFlags &= ~(DB_SchemaLoaded|DB_ResetWanted); | |
| } | |
| /* | |
| ** Find and return the schema associated with a BTree. Create | |
| ** a new one if necessary. | |
| */ | |
| Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){ | |
| Schema * p; | |
| if( pBt ){ | |
| p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaClear); | |
| }else{ | |
| p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema)); | |
| } | |
| if( !p ){ | |
| sqlite3OomFault(db); | |
| }else if ( 0==p->file_format ){ | |
| sqlite3HashInit(&p->tblHash); | |
| sqlite3HashInit(&p->idxHash); | |
| sqlite3HashInit(&p->trigHash); | |
| sqlite3HashInit(&p->fkeyHash); | |
| p->enc = SQLITE_UTF8; | |
| } | |
| return p; | |
| } | |