import lightning as L from lightning.pytorch.utilities import rank_zero_only import torch import os import gc torch.set_float32_matmul_precision("high") from SimulateOnEnv import batch_simulate_on_environment from lightning.pytorch.callbacks import Callback from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig from typing import Optional from peft import LoraConfig, TaskType, get_peft_model, PeftModel from safetensors import safe_open from safetensors.torch import save_file def safe_load(path): """安全加载权重,处理大小不匹配""" result = {} with safe_open(path, framework="pt") as f: for key in f.keys(): try: result[key] = f.get_tensor(key) except Exception as e: print(f"Error loading {key}: {str(e)}") return result def set_special_tokens(model, tokenizer): if tokenizer.pad_token is None and tokenizer.pad_token_id is None: print_rank_0(f"[WARNING] the pad token of the tokenizer is None") # We do not resize the vocab embedding, since it ruins the KL value with the ref_model tokenizer.pad_token_id = tokenizer.eos_token_id tokenizer.pad_token = tokenizer.eos_token # tokenizer.pad_token = tokenizer.decode(0) model.config.pad_token_id = tokenizer.pad_token_id model.config.bos_token_id = tokenizer.bos_token_id model.config.eos_token_id = tokenizer.eos_token_id return model, tokenizer def load_model_and_tokenizer(model_name_or_path, actor_checkpoint=None): model = AutoModelForCausalLM.from_pretrained( model_name_or_path, trust_remote_code=True, use_cache=False, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, ) if hasattr(model, "ref_model"): del model.ref_model lora_config = LoraConfig( r=8, lora_alpha=16, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type=TaskType.CAUSAL_LM, ) model = get_peft_model(model, lora_config) if actor_checkpoint is not None: weight_map = {} with safe_open(actor_checkpoint, framework="pt") as f: for key in f.keys(): new_key = key.replace("base_model.model.", "") weight_map[new_key] = f.get_tensor(key) # 应用权重 for name, param in model.named_parameters(): for key, tensor in weight_map.items(): if key in name and param.shape == tensor.shape: param.data.copy_(tensor) print(f"加载权重: {name} <- {key}") break tokenizer = AutoTokenizer.from_pretrained( model_name_or_path, padding_side="left", # for batch decode truncation_side="left", model_max_length=1024, trust_remote_code=True, ) model.gradient_checkpointing_enable() model, tokenizer = set_special_tokens(model, tokenizer) return model, tokenizer class ActorModel(torch.nn.Module): def __init__(self, get_device, model_name_or_path, actor_checkpoint=None): super().__init__() self.get_device = get_device self.model, self.tokenizer = load_model_and_tokenizer(model_name_or_path, actor_checkpoint) def forward(self, observation, do_sample=True): obs_ids = self.tokenizer( observation, return_tensors="pt", padding=True, truncation=True, max_length=512, ).to(self.model.device) obs_embeds = self.model.get_input_embeddings()(obs_ids["input_ids"]) outputs = self.model.generate( inputs_embeds=obs_embeds, attention_mask=obs_ids["attention_mask"], max_new_tokens=32, do_sample=do_sample, pad_token_id=self.tokenizer.eos_token_id, ) action = self.tokenizer.batch_decode(outputs, skip_special_tokens=True) return action def behavioral_cloning_loss(self, observation, action, **kwargs): logsum_probs = self.get_logsum_prob( observation, action ) # this line has been refactored and not tested loss = -logsum_probs.mean() return loss, {"behavioral_cloning/loss": loss.detach()} def get_logsum_prob(self, observation, action_from_dataloader, **kwargs): action = [a + self.tokenizer.eos_token for a in action_from_dataloader] alltext = [obs + a for obs, a in zip(observation, action)] generated_probabilities = self.to_tokens_and_logprobs(alltext) assert ( len(generated_probabilities) == len(alltext) == len(observation) == len(action) ) mask = torch.zeros_like(generated_probabilities.detach(), dtype=torch.bool) for i, (obs, act, text) in enumerate(zip(observation, action, alltext)): assert text == obs + act act_ids = self.tokenizer(act, return_tensors="pt", padding=True) txt_ids = self.tokenizer(text, return_tensors="pt", padding=True) n_token_act = len( act_ids["input_ids"][0] ) # [0] because the batch is one inside the foor loop n_token_txt = len(txt_ids["input_ids"][0]) mask[i, n_token_txt - n_token_act - 1 : n_token_txt - 1] = ( True # the -1 shift is due to the the generated probabilities being shifted ) generated_probabilities = torch.where(mask, generated_probabilities, 1.0) log_probs = torch.where( mask, torch.log(generated_probabilities), 0.0 ) # must be separate from the line above for numerical stability (cannot take log(0.0)) logsum_probs = torch.sum(log_probs, dim=1) del act_ids, txt_ids, log_probs, generated_probabilities return logsum_probs def to_tokens_and_logprobs(self, input_texts): input_ids = self.tokenizer( input_texts, padding=True, truncation=True, return_tensors="pt" ).input_ids.to(self.get_device()) outputs = self.model(input_ids) probs = torch.softmax(outputs.logits, dim=-1) # collect the probability of the generated token -- probability at index 0 corresponds to the token at index 1 probs = probs[:, :-1, :] input_ids = input_ids[:, 1:] gen_probs = torch.gather(probs, 2, input_ids[:, :, None]).squeeze(-1) del outputs, probs torch.cuda.empty_cache() gc.collect() torch.cuda.memory._set_allocator_settings('max_split_size_mb:32') return gen_probs class RobertaCritic(torch.nn.Module): def __init__( self, get_device, discount_factor: float, tau: float, expectile: float, from_checkpoint=None, ): super().__init__() self.get_device = get_device self.discount_factor = discount_factor self.tau = tau self.expectile = expectile ### Define the Critic from ArcherCritic import ArcherDoubleCritic self.critic = ArcherDoubleCritic(in_dim=768, out_dim=1) self.target_critic = ArcherDoubleCritic(in_dim=768, out_dim=1) self.soft_update_target_critic(1) if from_checkpoint is not None: checkpoint = torch.load(from_checkpoint, map_location=torch.device("cpu")) weights = { k.removeprefix("critic."): v for k, v in checkpoint["state_dict"].items() if k.startswith("critic.") } self.load_state_dict(weights) print( "I have initialized the critic from the checkpoint: ", from_checkpoint ) ### Miscellaneus Shortcuts self.softmax = torch.nn.Softmax(dim=-1) self.td_criterion = torch.nn.MSELoss() self.expectile_criterion = lambda diff: self.loss_value_diff( diff=diff, expectile=self.expectile ) def get_q(self, observation, action, detach_model=False): return self.critic.get_q(observation, action, detach_model=detach_model) def get_v(self, inputs, detach_model=False): return self.critic.get_v(inputs, detach_model=detach_model) def get_target_v(self, inputs, detach_model=False): return self.target_critic.get_v(inputs, detach_model=detach_model) def get_target_q(self, observation, action, detach_model=False): return self.target_critic.get_q(observation, action, detach_model=detach_model) def get_advantages(self, observation, action): q1, q2 = self.get_q(observation, action) v1, v2 = self.get_v(observation) q = torch.minimum(q1, q2) v = torch.minimum(v1, v2) advantages = q - v return advantages def argmax_advantage(self, observation, get_available_actions): argmax_actions = [] for obs in observation: available_actions = get_available_actions(obs) advantages = torch.as_tensor( [self.get_advantages([obs], [action]) for action in available_actions] ) action = available_actions[torch.argmax(advantages)] argmax_actions.append(action) return argmax_actions def soft_update_target_critic(self, tau=None): if tau == None: tau = self.tau for target_param, param in zip( self.target_critic.parameters(), self.critic.parameters() ): target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau) def iql_loss(self, observation, action, reward, next_observation, done, **kwargs): ### Fitting the Q function q1, q2 = self.get_q(observation, action, detach_model=False) q1 = q1.flatten() q2 = q2.flatten() reward = torch.Tensor(reward) # .to(self.agent.device) done = torch.Tensor(done) # .to(self.agent.device) with torch.no_grad(): target_v1, target_v2 = self.get_target_v(next_observation) target_v1 = ( reward + torch.logical_not(done) * target_v1.flatten() * self.discount_factor ) target_v2 = ( reward + torch.logical_not(done) * target_v2.flatten() * self.discount_factor ) q1_loss = self.td_criterion(q1, target_v1) q2_loss = self.td_criterion(q2, target_v2) ### Fitting the value function with torch.no_grad(): target_q1, target_q2 = self.get_target_q( observation, action, detach_model=False ) target_q1 = target_q1.flatten() target_q2 = target_q2.flatten() v1, v2 = self.get_v(observation, detach_model=False) v1 = v1.flatten() v2 = v2.flatten() v1_loss = self.expectile_criterion(diff=target_q1.detach() - v1) v2_loss = self.expectile_criterion(diff=target_q2.detach() - v2) loss = q1_loss + q2_loss + v1_loss + v2_loss ### Log and print what's happening log = self.get_log( q1=q1, q2=q2, v1=v1, v2=v2, q1_loss=q1_loss, q2_loss=q2_loss, v1_loss=v1_loss, v2_loss=v2_loss, target_q1=target_q1, target_q2=target_q2, ) return loss, log def loss_value_diff(self, diff, expectile): """Loss function for iql expectile value difference.""" weight = torch.where(diff > 0, expectile, (1 - expectile)) return (weight * (diff**2)).mean() def get_log( self, q1, q2, v1, v2, q1_loss, q2_loss, v1_loss, v2_loss, target_q1, target_q2 ): return { "critic/q1.loss": q1_loss.detach(), "critic/q2.loss": q2_loss.detach(), "critic/v1.loss": v1_loss.detach(), "critic/v2.loss": v2_loss.detach(), "critic/q1.mean": torch.mean(q1).detach(), "critic/q1.min": torch.min(q1).detach(), "critic/q1.max": torch.max(q1).detach(), "critic/q2.mean": torch.mean(q2).detach(), "critic/q2.max": torch.max(q2).detach(), "critic/q2.min": torch.min(q2).detach(), "critic/v1.mean": torch.mean(v1).detach(), "critic/v1.min": torch.min(v1).detach(), "critic/v1.max": torch.max(v1).detach(), "critic/v2.mean": torch.mean(v2).detach(), "critic/v2.max": torch.max(v2).detach(), "critic/v2.min": torch.min(v2).detach(), "critic/target_q1.mean": torch.mean(target_q1).detach(), "critic/target_q1.min": torch.min(target_q1).detach(), "critic/target_q1.max": torch.max(target_q1).detach(), "critic/target_q2.mean": torch.mean(target_q2).detach(), "critic/target_q2.max": torch.max(target_q2).detach(), "critic/target_q2.min": torch.min(target_q2).detach(), } class Agent(L.LightningModule): def validation_step(self, batch, batch_idx): # Perform evaluation on environment with stochastic policy return None eval_dataset = batch_simulate_on_environment( policy=lambda obs: self.forward(obs), env=None ) self.log( "eval/avg_return", eval_dataset.mean_trajectory_return(), sync_dist=True ) self.log( "eval/std_return", eval_dataset.std_trajectory_return(), sync_dist=True ) # Perform evaluation on environment with deterministic policy deterministic_eval_dataset = batch_simulate_on_environment( policy=lambda obs: self.forward(obs, do_sample=False), env=None, ) self.log( "eval/avg_return_deterministic", deterministic_eval_dataset.mean_trajectory_return(), sync_dist=True, ) self.log( "eval/std_return_deterministic", deterministic_eval_dataset.std_trajectory_return(), sync_dist=True, ) return eval_dataset.mean_trajectory_return() class BehaviouralCloning(Agent): def __init__(self, lr: float): super().__init__() # Initialize LLM base class self.save_hyperparameters() ### Config self.lr = lr ### Initialization self.agent = ActorModel(get_device=lambda: self.device) def forward(self, observation, **kwargs): return self.agent.forward(observation, **kwargs) def training_step(self, batch, batch_idx): loss, log = self.agent.behavioral_cloning_loss(**batch) self.log_dict(log, sync_dist=True) return loss def configure_optimizers(self): from torch.optim import Adam # 收集所有需要优化的参数 optimizer_params = [ {"params": self.actor.model.parameters(), "lr": self.actor_lr}, ] # 如果需要优化critic,添加其参数 if self.optimize_critic: optimizer_params.append({ "params": self.critic.critic.parameters(), "lr": self.critic_lr }) # 创建单个优化器 optimizer = Adam(optimizer_params) return optimizer class FilteredBehaviouralCloning(BehaviouralCloning): def __init__(self, lr: float, filter: float): super().__init__(lr) self.filter = filter def configure_callbacks(self): return FilterDataset(filter=self.filter) class FilterDataset(Callback): def __init__(self, filter: float): self.filter = filter def on_fit_start(self, trainer, algorithm): print("*** Filtering Dataset ***") dataset = trainer.datamodule.dataset print("Statistics of Input Dataset") print("Number of Trajectories:", dataset.nTrajectories()) print("Number of Trajectories:", len(dataset)) dataset.keep_top_fraction_of_trajectories(fraction=self.filter) trainer.datamodule.dataset = dataset print("Statistics of Filtered Dataset") print("Number of Trajectories:", dataset.nTrajectories()) print("Number of Trajectories:", len(dataset)) class ActorCritic(Agent): def __init__( self, model_name_or_path: str, actor_lr: float, critic_lr: float, tau: float, accumulate_grad_batches: int, discount_factor: float, critic_expectile: float, optimize_critic: bool, actor_checkpoint=None, critic_checkpoint=None, **kwargs ): super().__init__() # Initialize LLM base class self.example_input_array = (torch.zeros(1, 1, dtype=torch.long),) self.save_hyperparameters() ### Config self.actor_lr = actor_lr self.critic_lr = critic_lr self.discount_factor = discount_factor self.tau = tau ### Manual Gradient Accumulation self.accumulate_grad_batches = accumulate_grad_batches self.automatic_optimization = False ### Initialization self.actor = ActorModel( get_device=lambda: self.device, model_name_or_path=model_name_or_path, actor_checkpoint=actor_checkpoint ) self.critic = RobertaCritic( get_device=lambda: self.device, discount_factor=discount_factor, tau=tau, expectile=critic_expectile, from_checkpoint=critic_checkpoint, ) self.actor_current_backward_step = 0 self.critic_current_backward_step = 0 self.critic_warmup_gradient_steps = 0 self.optimize_actor = lambda: ( True if self.critic_current_backward_step // self.accumulate_grad_batches >= self.critic_warmup_gradient_steps else False ) self.optimize_critic = lambda: optimize_critic def forward(self, observation, **kwargs): action = self.actor.forward(observation, **kwargs) return action def training_step(self, batch, batch_idx): # if batch_idx == 3: # return optimizer = self.optimizers() mem = torch.cuda.memory_allocated() / torch.cuda.get_device_properties(0).total_memory if mem > 0.8: gc.collect() torch.cuda.empty_cache() if self.optimize_critic(): # scale losses by 1/N (for N batches of gradient accumulation) critic_loss, critic_log = self.critic_loss(batch) critic_loss /= self.accumulate_grad_batches self.manual_backward(critic_loss) self.critic_current_backward_step += 1 self.log_dict(critic_log, sync_dist=True) # accumulate gradients of N batches if self.critic_current_backward_step % self.accumulate_grad_batches == 0: optimizer.step() optimizer.zero_grad() self.critic.soft_update_target_critic(self.tau) if self.optimize_actor(): # scale losses by 1/N (for N batches of gradient accumulation) actor_loss, actor_log = self.actor_loss(batch) actor_loss /= self.accumulate_grad_batches self.manual_backward(actor_loss) self.actor_current_backward_step += 1 self.log_dict(actor_log, sync_dist=True) # accumulate gradients of N batches if self.actor_current_backward_step % self.accumulate_grad_batches == 0: optimizer.step() optimizer.zero_grad() def get_actor_log(self, loss, advantages, log_prob): return { "actor/loss": loss.detach(), "actor/advantages.mean": advantages.detach().mean(), "actor/advantages.max": torch.max(advantages.detach()), "actor/advantages.min": torch.min(advantages.detach()), "actor/log_prob.mean": torch.mean(log_prob.detach()), "actor/log_prob.max": torch.max(log_prob.detach()), "actor/log_prob.min": torch.min(log_prob.detach()), } def configure_optimizers(self): from torch.optim import Adam optimizer_params = [] if hasattr(self, 'actor') and hasattr(self.actor, 'parameters'): optimizer_params.append({ "params": self.actor.parameters(), "lr": self.actor_lr }) if self.optimize_critic and hasattr(self, 'critic') and hasattr(self.critic, 'parameters'): optimizer_params.append({ "params": self.critic.parameters(), "lr": self.critic_lr }) if not optimizer_params: return None optimizer = Adam(optimizer_params) return optimizer class OfflineArcher(ActorCritic): def __init__( self, model_name_or_path: str, inv_temp: float, actor_lr: float, critic_lr: float, tau: float, accumulate_grad_batches: int, discount_factor: float, critic_expectile: float, optimize_critic: bool, actor_checkpoint: Optional[str] = None, critic_checkpoint: Optional[str] = None, **kwargs ): super().__init__( model_name_or_path=model_name_or_path, actor_lr=actor_lr, critic_lr=critic_lr, tau=tau, accumulate_grad_batches=accumulate_grad_batches, discount_factor=discount_factor, critic_expectile=critic_expectile, optimize_critic=optimize_critic, actor_checkpoint=actor_checkpoint, critic_checkpoint=critic_checkpoint, **kwargs ) self.inv_temp = inv_temp self.actor_loss = lambda batch: self.awr_loss(**batch) self.critic_loss = lambda batch: self.critic.iql_loss(**batch) def awr_loss(self, observation, action, **kwargs): log_prob = self.actor.get_logsum_prob(observation, action) with torch.no_grad(): advantages = self.critic.get_advantages(observation, action) advantages = advantages.flatten() log_prob = log_prob.flatten() factor = torch.exp(self.inv_temp * advantages) loss_batch = -factor * log_prob loss = loss_batch.mean() # ### Log and print what's happening log = self.get_actor_log(loss=loss, advantages=advantages, log_prob=log_prob) log = { **log, **{ "actor/factor.mean": factor.detach().mean(), "actor/factor.max": torch.max(factor.detach()), "actor/factor.min": torch.min(factor.detach()), }, } return loss, log def configure_optimizers(self): # 直接调用基类方法 return super().configure_optimizers() @rank_zero_only def on_save_checkpoint(self, checkpoint): """保存 LoRA 适配器权重""" super().on_save_checkpoint(checkpoint) save_dir = self.trainer.default_root_dir os.makedirs(save_dir, exist_ok=True) # 保存 LoRA 适配器 if hasattr(self.actor.model, "save_pretrained"): self.actor.model.save_pretrained(save_dir) # 保存 tokenizer if hasattr(self.actor, "tokenizer"): self.actor.tokenizer.save_pretrained(save_dir) print(f"✅ LoRA adapter saved to: {save_dir}") self.merge_and_save_lora(os.path.join(save_dir, "merged_model")) def merge_and_save_lora(self, save_dir): """ Merge the LoRA adapter weights into the base model and save the merged model and tokenizer. """ # Only proceed if the actor model has the correct method try: # 确保模型在CPU上且处于eval模式 original_device = next(self.actor.model.parameters()).device self.actor.model.to('cpu') self.actor.model.eval() if hasattr(self.actor.model, "merge_and_unload"): # 执行合并 merged_model = self.actor.model.merge_and_unload() # 检查合并结果 from peft import PeftModel if isinstance(merged_model, PeftModel): print(">>> [Warning] Still a PeftModel after merge. Using base_model.model...") merged_model = merged_model.base_model.model # 保存合并后的模型 merged_model.save_pretrained(os.path.join(save_dir, "merged_model")) print(f"✅ Merged model saved to: {os.path.join(save_dir, 'merged_model')}") else: print("❌ merge_and_unload method not found in actor.model. Cannot merge LoRA weights.") except Exception as e: print(f"❌ Error merging LoRA weights: {e}") import traceback traceback.print_exc() finally: # 恢复原始设备 self.actor.model.to(original_device) class IQLKL(ActorCritic): def __init__(self, kl_coeff: float, reference_actor_path, **kwargs): super().__init__(**kwargs) self.kl_coeff = kl_coeff self.reference_actor = ActorModel( get_device=lambda: self.device, from_checkpoint=reference_actor_path ) self.actor_loss = lambda batch: self.advantage_kl_loss(**batch) self.critic_loss = lambda batch: self.critic.iql_loss(**batch) def advantage_kl_loss(self, observation, **kwargs): reinforce_loss, generated_output = self.reinforce_loss(observation=observation) with torch.no_grad(): reference_log_prob = self.reference_actor.get_logsum_prob( observation, generated_output["action"] ) ratio = generated_output["log_prob"] - reference_log_prob kl_loss = (ratio.detach() + 1.0) * generated_output["log_prob"] loss = (1 - self.kl_coeff) * reinforce_loss + self.kl_coeff * kl_loss log = generated_output["log"] log = { **log, "reference_log_prob.mean": reference_log_prob.mean(), "reference_log_prob.max": reference_log_prob.max(), "reference_log_prob.min": reference_log_prob.min(), } log = { **log, "kl_loss.mean": kl_loss.mean(), "kl_loss.max": kl_loss.max(), "kl_loss.min": kl_loss.min(), } log = {**log, "actor_loss.mean": loss.mean(), "ratio": ratio.mean()} return loss.mean(), log def reinforce_loss(self, observation, **kwargs): ### Reinforce Loss action = self.actor.forward(observation) log_prob = self.actor.get_logsum_prob(observation, action) with torch.no_grad(): advantages = self.critic.get_advantages(observation, action) loss = -advantages.flatten() * log_prob ### Logging log = self.get_actor_log( loss=torch.mean(loss.detach()), advantages=advantages, log_prob=log_prob ) # self.log_dict(log) return loss, { "log_prob": log_prob, "advantages": advantages, "action": action, "log": log, }