|
|
from lightning import LightningDataModule |
|
|
import torch.utils.data as data |
|
|
from Dataset import TrajectoryDataset, EmptyDataset |
|
|
from SimulateOnEnv import batch_simulate_on_environment |
|
|
import numpy as np |
|
|
from copy import deepcopy |
|
|
import sys |
|
|
import random |
|
|
|
|
|
|
|
|
def rsa_reward(num_feature, min_turns, conv_turn, gamma=2.0): |
|
|
""" |
|
|
Nonlinear normalization function, returns u ∈ [0, 1] |
|
|
- num_feature = min_turns -> u = 1 |
|
|
- num_feature = conv_turn -> u = 0 |
|
|
- The closer to min_turns, the slower it approaches 1 |
|
|
""" |
|
|
if num_feature == min_turns: |
|
|
return 1 |
|
|
|
|
|
u = (conv_turn - num_feature) / (min_turns - num_feature) |
|
|
|
|
|
return max(0, min(1, u**gamma)) |
|
|
|
|
|
|
|
|
class Task(LightningDataModule): |
|
|
def __init__(self, batch_size: int, n_traj_eval: int, **kwargs): |
|
|
super().__init__(**kwargs) |
|
|
self.batch_size = batch_size |
|
|
self.eval_batch_size = self.batch_size |
|
|
self.n_traj_eval = n_traj_eval |
|
|
|
|
|
|
|
|
self.shuffle = True |
|
|
self.drop_last = True |
|
|
|
|
|
def setup(self, stage: str): |
|
|
raise NotImplementedError |
|
|
|
|
|
def train_dataloader(self): |
|
|
return data.DataLoader( |
|
|
dataset=self.dataset, |
|
|
batch_size=self.batch_size, |
|
|
shuffle=self.shuffle, |
|
|
drop_last=self.drop_last, |
|
|
num_workers=8, |
|
|
pin_memory=True, |
|
|
persistent_workers=True, |
|
|
) |
|
|
|
|
|
def val_dataloader(self): |
|
|
return data.DataLoader( |
|
|
dataset=EmptyDataset(length=self.n_traj_eval), |
|
|
batch_size=self.eval_batch_size, |
|
|
pin_memory=True, |
|
|
) |
|
|
|
|
|
def get_eval_log(self, **kwargs): |
|
|
pass |
|
|
|
|
|
def teardown(self, stage: str): |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
class TwentyQuestions(Task): |
|
|
def __init__(self, batch_size: int, n_traj_eval: int, word_list=None, **kwargs): |
|
|
super().__init__(batch_size, n_traj_eval, **kwargs) |
|
|
|
|
|
self.word_list = word_list |
|
|
self.max_horizon = 20 |
|
|
|
|
|
def setup(self, stage: str): |
|
|
self.dataset = self.read_data() |
|
|
self.dataset.check_consistency() |
|
|
print( |
|
|
"\n *** Dataset Trimming Now Disabled. Please Called the Subroutine for triming" |
|
|
) |
|
|
|
|
|
def read_data(self): |
|
|
import json |
|
|
from Dataset import TrajectoryDataset |
|
|
|
|
|
f = open("datasets/20q_train.json") |
|
|
data = json.load(f) |
|
|
dataset = TrajectoryDataset() |
|
|
|
|
|
for game in data: |
|
|
assert len(game["lines"]) <= 20 |
|
|
history = "Questions:\n" |
|
|
for interaction in game["lines"]: |
|
|
yesAnswer = interaction[-5:] == " Yes." |
|
|
noAnswer = interaction[-4:] == " No." |
|
|
assert yesAnswer or noAnswer |
|
|
observation = history |
|
|
|
|
|
done = ( |
|
|
True if interaction == game["lines"][-1] else False |
|
|
) |
|
|
reward = 0 if done and game["correct"] else -1 |
|
|
|
|
|
if yesAnswer: |
|
|
action = interaction[:-5] |
|
|
if noAnswer: |
|
|
action = interaction[:-4] |
|
|
|
|
|
history += interaction + "\n" |
|
|
dataset.append_observation_action_reward(observation, action, reward) |
|
|
dataset.append_terminal_observation( |
|
|
history, |
|
|
trajectory_info={"correct": game["correct"], "word": game["word"]}, |
|
|
) |
|
|
|
|
|
dataset.check_consistency() |
|
|
return dataset |
|
|
|
|
|
|
|
|
class RSAGame(Task): |
|
|
def __init__( |
|
|
self, |
|
|
base_model: str, |
|
|
batch_size: int, |
|
|
n_traj_eval: int, |
|
|
word_list=None, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(batch_size, n_traj_eval, **kwargs) |
|
|
self.base_model = base_model |
|
|
|
|
|
self.word_list = word_list |
|
|
self.max_horizon = 20 |
|
|
|
|
|
def setup(self, stage: str): |
|
|
self.dataset = self.read_data() |
|
|
self.dataset.check_consistency() |
|
|
print( |
|
|
"\n *** Dataset Trimming Now Disabled. Please Called the Subroutine for triming" |
|
|
) |
|
|
|
|
|
def read_data(self): |
|
|
import json |
|
|
from Dataset import TrajectoryDataset |
|
|
from rsa_game import get_game_outcome, randomly_convert_game_history_to_query |
|
|
|
|
|
with open( |
|
|
f"rsa/{self.base_model}_sampling_all_targets_results.json" |
|
|
) as f: |
|
|
data = json.load(f) |
|
|
with open( |
|
|
"rsa/reasoning_dialogs.json" |
|
|
) as f: |
|
|
for key, value in json.load(f).items(): |
|
|
instance = {} |
|
|
instance["history"] = value["dialog"] |
|
|
instance["target"] = value["target_referent"].split(" ") |
|
|
instance["min_turns"] = len(value["dialog"]) |
|
|
instance["max_turns"] = len(instance["target"]) * 2 |
|
|
instance["object_list"] = value["referent_set"] |
|
|
data.append(instance) |
|
|
|
|
|
dataset = TrajectoryDataset() |
|
|
|
|
|
for game in random.sample(data, 3200): |
|
|
is_valid = True |
|
|
for message in game["history"]: |
|
|
if message["content"] == "": |
|
|
is_valid = False |
|
|
break |
|
|
if not is_valid: |
|
|
continue |
|
|
|
|
|
outcome, history_length = get_game_outcome( |
|
|
game["history"], game["target"], game["min_turns"] |
|
|
) |
|
|
if outcome == "game wins": |
|
|
reward = rsa_reward( |
|
|
len(game["target"]) * 2, game["min_turns"] * 2, history_length |
|
|
) |
|
|
else: |
|
|
continue |
|
|
|
|
|
if reward == 0: |
|
|
continue |
|
|
|
|
|
for idx, interaction in enumerate(game["history"][:history_length]): |
|
|
query = randomly_convert_game_history_to_query( |
|
|
game["history"][:idx], |
|
|
target=game["target"], |
|
|
min_turns=game["min_turns"], |
|
|
object_list=game["object_list"], |
|
|
) |
|
|
target = interaction["content"] |
|
|
|
|
|
done = ( |
|
|
True if idx >= history_length - 2 else False |
|
|
) |
|
|
reward = 0 if done else reward |
|
|
|
|
|
dataset.append_observation_action_reward(query, target, reward) |
|
|
|
|
|
history = randomly_convert_game_history_to_query( |
|
|
game["history"], |
|
|
target=game["target"], |
|
|
min_turns=game["min_turns"], |
|
|
object_list=game["object_list"], |
|
|
) |
|
|
dataset.append_terminal_observation( |
|
|
history, |
|
|
trajectory_info={ |
|
|
"object_list": game["object_list"], |
|
|
"target": game["target"], |
|
|
}, |
|
|
) |
|
|
|
|
|
print("The length of the dataset is: ", len(dataset)) |
|
|
dataset.check_consistency() |
|
|
return dataset |
|
|
|
|
|
|
|
|
class WordTaboo(Task): |
|
|
def __init__( |
|
|
self, |
|
|
base_model: str, |
|
|
batch_size: int, |
|
|
n_traj_eval: int, |
|
|
word_list=None, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(batch_size, n_traj_eval, **kwargs) |
|
|
|
|
|
self.base_model = base_model |
|
|
self.word_list = word_list |
|
|
self.max_horizon = 20 |
|
|
|
|
|
def setup(self, stage: str): |
|
|
self.dataset = self.read_data() |
|
|
self.dataset.check_consistency() |
|
|
print( |
|
|
"\n *** Dataset Trimming Now Disabled. Please Called the Subroutine for triming" |
|
|
) |
|
|
|
|
|
def read_data(self): |
|
|
import json |
|
|
from Dataset import TrajectoryDataset |
|
|
from word_taboo import get_game_outcome, randomly_convert_game_history_to_query |
|
|
|
|
|
with open( |
|
|
f"wordtaboo/{self.base_model}_sampling_all_targets_results.json", "r" |
|
|
) as f: |
|
|
data = json.load(f) |
|
|
with open( |
|
|
"wordtaboo/llm_game_top_test_results.json", "r" |
|
|
) as f: |
|
|
data.extend(json.load(f)) |
|
|
|
|
|
dataset = TrajectoryDataset() |
|
|
|
|
|
for game in data: |
|
|
is_valid = True |
|
|
for message in game["history"]: |
|
|
if message["content"] == "": |
|
|
is_valid = False |
|
|
break |
|
|
if not is_valid: |
|
|
continue |
|
|
|
|
|
outcome, history_length = get_game_outcome( |
|
|
game["history"], game["target"], game["max_turns"] |
|
|
) |
|
|
|
|
|
if outcome == "defender wins": |
|
|
winner = "defender" |
|
|
|
|
|
elif outcome == "attacker wins": |
|
|
if self.base_model == "Qwen3-14B": |
|
|
if random.random() < 0.85: |
|
|
continue |
|
|
else: |
|
|
if random.random() < 0.9: |
|
|
continue |
|
|
winner = "attacker" |
|
|
|
|
|
else: |
|
|
continue |
|
|
|
|
|
for idx, interaction in enumerate(game["history"][:history_length]): |
|
|
if interaction["role"] != winner: |
|
|
continue |
|
|
|
|
|
query = randomly_convert_game_history_to_query( |
|
|
game["history"][:idx], |
|
|
target=game["target"], |
|
|
max_turns=game["max_turns"], |
|
|
) |
|
|
|
|
|
target = interaction["content"] |
|
|
|
|
|
done = ( |
|
|
True if idx >= history_length - 2 else False |
|
|
) |
|
|
reward = 0 if done else 1 |
|
|
|
|
|
dataset.append_observation_action_reward(query, target, reward) |
|
|
|
|
|
history = randomly_convert_game_history_to_query( |
|
|
game["history"], game["target"], game["max_turns"] |
|
|
) |
|
|
dataset.append_terminal_observation( |
|
|
history, trajectory_info={"target": game["target"]} |
|
|
) |
|
|
print("The length of the dataset is: ", len(dataset)) |
|
|
dataset.check_consistency() |
|
|
return dataset |
|
|
|
|
|
|
|
|
class StrategicDialogue(Task): |
|
|
def __init__( |
|
|
self, |
|
|
base_model: str, |
|
|
batch_size: int, |
|
|
n_traj_eval: int, |
|
|
word_list=None, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(batch_size, n_traj_eval, **kwargs) |
|
|
self.base_model = base_model |
|
|
|
|
|
self.word_list = word_list |
|
|
self.max_horizon = 20 |
|
|
|
|
|
def setup(self, stage: str): |
|
|
self.dataset = self.read_data() |
|
|
self.dataset.check_consistency() |
|
|
print( |
|
|
"\n *** Dataset Trimming Now Disabled. Please Called the Subroutine for triming" |
|
|
) |
|
|
|
|
|
def read_data(self): |
|
|
import json |
|
|
from Dataset import TrajectoryDataset |
|
|
from word_taboo import get_game_outcome, randomly_convert_game_history_to_query |
|
|
|
|
|
with open( |
|
|
f"wordtaboo/{self.base_model}_sampling_all_targets_results.json", "r" |
|
|
) as f: |
|
|
data = json.load(f) |
|
|
with open( |
|
|
"wordtaboo/llm_game_top_test_results.json", "r" |
|
|
) as f: |
|
|
data.extend(json.load(f)) |
|
|
|
|
|
dataset = TrajectoryDataset() |
|
|
|
|
|
for game in data: |
|
|
is_valid = True |
|
|
for message in game["history"]: |
|
|
if message["content"] == "": |
|
|
is_valid = False |
|
|
break |
|
|
if not is_valid: |
|
|
continue |
|
|
|
|
|
outcome, history_length = get_game_outcome( |
|
|
game["history"], game["target"], game["max_turns"] |
|
|
) |
|
|
|
|
|
if outcome == "defender wins": |
|
|
winner = "defender" |
|
|
|
|
|
elif outcome == "attacker wins": |
|
|
if self.base_model == "Qwen3-14B": |
|
|
if random.random() < 0.85: |
|
|
continue |
|
|
else: |
|
|
if random.random() < 0.9: |
|
|
continue |
|
|
winner = "attacker" |
|
|
|
|
|
else: |
|
|
continue |
|
|
|
|
|
for idx, interaction in enumerate(game["history"][:history_length]): |
|
|
if interaction["role"] != winner: |
|
|
continue |
|
|
|
|
|
query = randomly_convert_game_history_to_query( |
|
|
game["history"][:idx], |
|
|
target=game["target"], |
|
|
max_turns=game["max_turns"], |
|
|
) |
|
|
|
|
|
target = interaction["content"] |
|
|
|
|
|
done = ( |
|
|
True if idx >= history_length - 2 else False |
|
|
) |
|
|
reward = 0 if done else 1 |
|
|
|
|
|
dataset.append_observation_action_reward(query, target, reward) |
|
|
|
|
|
history = randomly_convert_game_history_to_query( |
|
|
game["history"], game["target"], game["max_turns"] |
|
|
) |
|
|
dataset.append_terminal_observation( |
|
|
history, trajectory_info={"target": game["target"]} |
|
|
) |
|
|
|
|
|
from rsa_game import get_game_outcome, randomly_convert_game_history_to_query |
|
|
with open( |
|
|
f"rsa/{self.base_model}_sampling_all_targets_results.json" |
|
|
) as f: |
|
|
data = json.load(f) |
|
|
with open( |
|
|
"rsa/reasoning_dialogs.json" |
|
|
) as f: |
|
|
for key, value in json.load(f).items(): |
|
|
instance = {} |
|
|
instance["history"] = value["dialog"] |
|
|
instance["target"] = value["target_referent"].split(" ") |
|
|
instance["min_turns"] = len(value["dialog"]) |
|
|
instance["max_turns"] = len(instance["target"]) * 2 |
|
|
instance["object_list"] = value["referent_set"] |
|
|
data.append(instance) |
|
|
|
|
|
for game in random.sample(data, 3200): |
|
|
is_valid = True |
|
|
for message in game["history"]: |
|
|
if message["content"] == "": |
|
|
is_valid = False |
|
|
break |
|
|
if not is_valid: |
|
|
continue |
|
|
|
|
|
outcome, history_length = get_game_outcome( |
|
|
game["history"], game["target"], game["min_turns"] |
|
|
) |
|
|
if outcome == "game wins": |
|
|
reward = rsa_reward( |
|
|
len(game["target"]) * 2, game["min_turns"] * 2, history_length |
|
|
) |
|
|
else: |
|
|
continue |
|
|
|
|
|
for idx, interaction in enumerate(game["history"][:history_length]): |
|
|
query = randomly_convert_game_history_to_query( |
|
|
game["history"][:idx], |
|
|
target=game["target"], |
|
|
min_turns=game["min_turns"], |
|
|
object_list=game["object_list"], |
|
|
) |
|
|
target = interaction["content"] |
|
|
|
|
|
done = ( |
|
|
True if idx >= history_length - 2 else False |
|
|
) |
|
|
reward = 0 if done else reward |
|
|
|
|
|
dataset.append_observation_action_reward(query, target, reward) |
|
|
|
|
|
history = randomly_convert_game_history_to_query( |
|
|
game["history"], |
|
|
target=game["target"], |
|
|
min_turns=game["min_turns"], |
|
|
object_list=game["object_list"], |
|
|
) |
|
|
dataset.append_terminal_observation( |
|
|
history, |
|
|
trajectory_info={ |
|
|
"object_list": game["object_list"], |
|
|
"target": game["target"], |
|
|
}, |
|
|
) |
|
|
|
|
|
print("The length of the dataset is: ", len(dataset)) |
|
|
dataset.check_consistency() |
|
|
return dataset |
|
|
|