File size: 8,740 Bytes
8014d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import AutoTokenizer, RobertaModel
import torch.nn as nn
from transformers import RobertaTokenizer, RobertaModel
import logging
# A logger for this file
log = logging.getLogger(__name__)

class ArcherDoubleCritic(torch.nn.Module):
    def __init__(self, in_dim, out_dim):
        super(ArcherDoubleCritic, self).__init__()
        self.base_lm = RobertaModel.from_pretrained('roberta-base', torch_dtype=torch.float16)

        ################
        print("*** Master Warning - Are these used? *** ")
        # self.base_lm.pooler.dense.weight = None
        # self.base_lm.pooler.dense.bias   = None
        ###############
        self.base_tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
        self.base_tokenizer.truncation_side = 'left'
        self.critic1 = nn.Sequential(nn.Linear(in_dim*2, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, out_dim))#.to(device)
        self.critic2 = nn.Sequential(nn.Linear(in_dim*2, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, out_dim))#.to(device)
        self.v_critic1 = nn.Sequential(nn.Linear(in_dim, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, out_dim))#.to(device)
        self.v_critic2 = nn.Sequential(nn.Linear(in_dim, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, out_dim))#.to(device)
    
    def get_q(self, observation, action, detach_model=False):
        state_actions = [o + a for o,a in zip(observation, action)]
        obs_ids = self.base_tokenizer(observation, padding = True, return_tensors='pt', truncation=True, max_length=512).to(self.base_lm.device)
        if detach_model:
            with torch.no_grad():
                lm_states = self.base_lm(**obs_ids).last_hidden_state[:,0]
        else:
            lm_states = self.base_lm(**obs_ids).last_hidden_state[:,0]
        action_ids = self.base_tokenizer(action, padding = True, return_tensors='pt', truncation=True, max_length=512).to(self.base_lm.device)
        if detach_model:
            with torch.no_grad():
                action_states = self.base_lm(**action_ids).last_hidden_state[:,0]
        else:
            action_states = self.base_lm(**action_ids).last_hidden_state[:,0]
        lm_states = torch.cat([lm_states, action_states], dim = 1)
        return self.critic1(lm_states), self.critic2(lm_states)

    def get_v(self, observation,detach_model=False):
        obs_ids = self.base_tokenizer(observation, padding = True, return_tensors='pt', truncation=True, max_length=512).to(self.base_lm.device)
        if detach_model:
            with torch.no_grad():
                lm_states = self.base_lm(**obs_ids).last_hidden_state[:,0]
        else:
            lm_states = self.base_lm(**obs_ids).last_hidden_state[:,0]
        # print(action.size())
        return self.v_critic1(lm_states), self.v_critic2(lm_states)


class ArcherCritic(torch.nn.Module):
    def __init__(self, in_dim=768, out_dim=4096, dropout = 0.5):
        super(ArcherCritic, self).__init__()
        self.model = AutoModelForCausalLM.from_pretrained('gpt2')
        self.critic = ArcherDoubleCritic(in_dim = 768, out_dim = 1)  
        self.target_critic = ArcherDoubleCritic(in_dim = 768, out_dim = 1) 
        self.soft_update_target_critic(1)
        self.tokenizer = AutoTokenizer.from_pretrained('gpt2', trust_remote_code=True)
        self.tokenizer.truncation_side = 'left'
        self.tokenizer.pad_token = self.tokenizer.eos_token
        self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
        # self.device = device
        self.dropout = torch.nn.Dropout(p=dropout)
        self.softmax = torch.nn.Softmax(dim= -1)

    def get_action(self, observation):
        obs_ids = self.tokenizer(observation, return_tensors='pt', padding=True, max_length=512).to(self.model.device)
        obs_embeds = self.model.get_input_embeddings()(obs_ids["input_ids"])
        outputs = self.model.generate(inputs_embeds=obs_embeds, attention_mask=obs_ids['attention_mask'],\
                                       max_new_tokens=32, do_sample=True, \
                                       pad_token_id = self.tokenizer.eos_token_id)#.cpu()
        raw_action = self.tokenizer.batch_decode(outputs, skip_special_tokens  = True)
        return raw_action

    def get_q(self, observation, action, detach_model=False):
        return self.critic.get_q(observation, action, detach_model = detach_model)

    def get_v(self, inputs, detach_model=False):
        return self.critic.get_v(inputs, detach_model = detach_model)
    
    def get_target_q(self, observation, action, detach_model=False):
        return self.target_critic.get_q(observation, action, detach_model = detach_model)

    def get_log_prob(self, observation, action):
        obs_ids = self.tokenizer(observation, return_tensors='pt', padding=True, max_length=512).to(self.model.device)
        action_ids = self.tokenizer(action, return_tensors='pt', padding=True, max_length=512).to(self.model.device)
        action_embeds = self.model.get_input_embeddings()(action_ids["input_ids"]).detach()
        obs_embeds = self.model.get_input_embeddings()(obs_ids["input_ids"]).detach()
        input_embeds = torch.cat([obs_embeds, action_embeds], dim = 1)
        attention_mask = torch.cat([obs_ids["attention_mask"], action_ids["attention_mask"]],\
                                dim = 1)
        outputs = self.model(inputs_embeds = input_embeds, attention_mask = attention_mask)
        prediction_probs = self.softmax(outputs.logits)
        selected_prediction_probs = torch.take_along_dim(prediction_probs[:, obs_ids["attention_mask"].size(1)-1:-1],\
                                                 action_ids["input_ids"].unsqueeze(2), dim=2).squeeze(2)
        logsum_probs = torch.sum(torch.log(selected_prediction_probs)*action_ids["attention_mask"], dim = 1)
        return logsum_probs
    
    def soft_update_target_critic(self, tau):
        # for target_critic, critic in zip(self.target_critics, self.critics):
        for target_param, param in zip(
                self.target_critic.parameters(), self.critic.parameters()
            ):
                target_param.data.copy_(
                    target_param.data * (1.0 - tau) + param.data * tau
                )

class DoubleCritic(torch.nn.Module):
    """
    a double critic without base lm
    """
    def __init__(self, in_dim, out_dim):
        super(DoubleCritic, self).__init__()
        # self.device = device
        self.critic1 = nn.Sequential(nn.Linear(in_dim*2, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, out_dim))#.to(device)
        self.critic2 = nn.Sequential(nn.Linear(in_dim*2, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, out_dim))#.to(device)
        self.v_critic1 = nn.Sequential(nn.Linear(in_dim, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, out_dim))#.to(device)
        self.v_critic2 = nn.Sequential(nn.Linear(in_dim, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, in_dim),\
                                    nn.ReLU(),\
                                    nn.Linear(in_dim, out_dim))#.to(device)
    
    def get_q(self, observation, action, detach_model=False):
        lm_states = torch.cat([observation, action], dim = 1)
        return self.critic1(lm_states), self.critic2(lm_states)

    def get_v(self, observation,detach_model=False):
        return self.v_critic1(observation), self.v_critic2(observation)