File size: 8,740 Bytes
8014d08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import AutoTokenizer, RobertaModel
import torch.nn as nn
from transformers import RobertaTokenizer, RobertaModel
import logging
# A logger for this file
log = logging.getLogger(__name__)
class ArcherDoubleCritic(torch.nn.Module):
def __init__(self, in_dim, out_dim):
super(ArcherDoubleCritic, self).__init__()
self.base_lm = RobertaModel.from_pretrained('roberta-base', torch_dtype=torch.float16)
################
print("*** Master Warning - Are these used? *** ")
# self.base_lm.pooler.dense.weight = None
# self.base_lm.pooler.dense.bias = None
###############
self.base_tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
self.base_tokenizer.truncation_side = 'left'
self.critic1 = nn.Sequential(nn.Linear(in_dim*2, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, out_dim))#.to(device)
self.critic2 = nn.Sequential(nn.Linear(in_dim*2, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, out_dim))#.to(device)
self.v_critic1 = nn.Sequential(nn.Linear(in_dim, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, out_dim))#.to(device)
self.v_critic2 = nn.Sequential(nn.Linear(in_dim, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, out_dim))#.to(device)
def get_q(self, observation, action, detach_model=False):
state_actions = [o + a for o,a in zip(observation, action)]
obs_ids = self.base_tokenizer(observation, padding = True, return_tensors='pt', truncation=True, max_length=512).to(self.base_lm.device)
if detach_model:
with torch.no_grad():
lm_states = self.base_lm(**obs_ids).last_hidden_state[:,0]
else:
lm_states = self.base_lm(**obs_ids).last_hidden_state[:,0]
action_ids = self.base_tokenizer(action, padding = True, return_tensors='pt', truncation=True, max_length=512).to(self.base_lm.device)
if detach_model:
with torch.no_grad():
action_states = self.base_lm(**action_ids).last_hidden_state[:,0]
else:
action_states = self.base_lm(**action_ids).last_hidden_state[:,0]
lm_states = torch.cat([lm_states, action_states], dim = 1)
return self.critic1(lm_states), self.critic2(lm_states)
def get_v(self, observation,detach_model=False):
obs_ids = self.base_tokenizer(observation, padding = True, return_tensors='pt', truncation=True, max_length=512).to(self.base_lm.device)
if detach_model:
with torch.no_grad():
lm_states = self.base_lm(**obs_ids).last_hidden_state[:,0]
else:
lm_states = self.base_lm(**obs_ids).last_hidden_state[:,0]
# print(action.size())
return self.v_critic1(lm_states), self.v_critic2(lm_states)
class ArcherCritic(torch.nn.Module):
def __init__(self, in_dim=768, out_dim=4096, dropout = 0.5):
super(ArcherCritic, self).__init__()
self.model = AutoModelForCausalLM.from_pretrained('gpt2')
self.critic = ArcherDoubleCritic(in_dim = 768, out_dim = 1)
self.target_critic = ArcherDoubleCritic(in_dim = 768, out_dim = 1)
self.soft_update_target_critic(1)
self.tokenizer = AutoTokenizer.from_pretrained('gpt2', trust_remote_code=True)
self.tokenizer.truncation_side = 'left'
self.tokenizer.pad_token = self.tokenizer.eos_token
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
# self.device = device
self.dropout = torch.nn.Dropout(p=dropout)
self.softmax = torch.nn.Softmax(dim= -1)
def get_action(self, observation):
obs_ids = self.tokenizer(observation, return_tensors='pt', padding=True, max_length=512).to(self.model.device)
obs_embeds = self.model.get_input_embeddings()(obs_ids["input_ids"])
outputs = self.model.generate(inputs_embeds=obs_embeds, attention_mask=obs_ids['attention_mask'],\
max_new_tokens=32, do_sample=True, \
pad_token_id = self.tokenizer.eos_token_id)#.cpu()
raw_action = self.tokenizer.batch_decode(outputs, skip_special_tokens = True)
return raw_action
def get_q(self, observation, action, detach_model=False):
return self.critic.get_q(observation, action, detach_model = detach_model)
def get_v(self, inputs, detach_model=False):
return self.critic.get_v(inputs, detach_model = detach_model)
def get_target_q(self, observation, action, detach_model=False):
return self.target_critic.get_q(observation, action, detach_model = detach_model)
def get_log_prob(self, observation, action):
obs_ids = self.tokenizer(observation, return_tensors='pt', padding=True, max_length=512).to(self.model.device)
action_ids = self.tokenizer(action, return_tensors='pt', padding=True, max_length=512).to(self.model.device)
action_embeds = self.model.get_input_embeddings()(action_ids["input_ids"]).detach()
obs_embeds = self.model.get_input_embeddings()(obs_ids["input_ids"]).detach()
input_embeds = torch.cat([obs_embeds, action_embeds], dim = 1)
attention_mask = torch.cat([obs_ids["attention_mask"], action_ids["attention_mask"]],\
dim = 1)
outputs = self.model(inputs_embeds = input_embeds, attention_mask = attention_mask)
prediction_probs = self.softmax(outputs.logits)
selected_prediction_probs = torch.take_along_dim(prediction_probs[:, obs_ids["attention_mask"].size(1)-1:-1],\
action_ids["input_ids"].unsqueeze(2), dim=2).squeeze(2)
logsum_probs = torch.sum(torch.log(selected_prediction_probs)*action_ids["attention_mask"], dim = 1)
return logsum_probs
def soft_update_target_critic(self, tau):
# for target_critic, critic in zip(self.target_critics, self.critics):
for target_param, param in zip(
self.target_critic.parameters(), self.critic.parameters()
):
target_param.data.copy_(
target_param.data * (1.0 - tau) + param.data * tau
)
class DoubleCritic(torch.nn.Module):
"""
a double critic without base lm
"""
def __init__(self, in_dim, out_dim):
super(DoubleCritic, self).__init__()
# self.device = device
self.critic1 = nn.Sequential(nn.Linear(in_dim*2, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, out_dim))#.to(device)
self.critic2 = nn.Sequential(nn.Linear(in_dim*2, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, out_dim))#.to(device)
self.v_critic1 = nn.Sequential(nn.Linear(in_dim, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, out_dim))#.to(device)
self.v_critic2 = nn.Sequential(nn.Linear(in_dim, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, in_dim),\
nn.ReLU(),\
nn.Linear(in_dim, out_dim))#.to(device)
def get_q(self, observation, action, detach_model=False):
lm_states = torch.cat([observation, action], dim = 1)
return self.critic1(lm_states), self.critic2(lm_states)
def get_v(self, observation,detach_model=False):
return self.v_critic1(observation), self.v_critic2(observation)
|