--- license: cc-by-nc-sa-4.0 language: - en tags: - iros 2025 - navigation challenge - visual-language navigation (vln) - robotics dataset - matterport3d - interiornav - r2r dataset ---
# IROS-2025-Challenge-Nav Dataset ## Dataset Summary 📖 This dataset includes the R2R dataset and the InteriorNav dataset, constructed from Matterport3D scanned environments and InteriorNav(kujiale) high-quality modeled environments, respectively, with corresponding navigation trajectories and language instructions. ### Trajectory Statistics by Subset | Dataset | Train | Val Seen | Val Unseen | Test Unseen | |------------------|------------------------|-------------------|---------------------|------------------------| | VLN-PE-R2R | 8,679 (stair-filtered) | 778 | 1,839 | 3,408 | | InteriorNav | 649 | 44 | 99 | 165 | | **Total** | **9,328** | **822** | **1,938** | **3,573** | # Get started 🔥 ## Download the Dataset ``` # Make sure git-lfs is installed (https://git-lfs.com) git lfs install git clone https://huggingface.co/datasets/InternRobotics/IROS-2025-Challenge-Nav # If you want to clone without large files - just their pointers GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/datasets/InternRobotics/IROS-2025-Challenge-Nav ``` ## Dataset Structure 📁 ``` vln_pe ├── raw_data/ # JSON files defining tasks, navigation goals, and dataset splits │ └── r2r/ │ ├── mini/ │ │ └── mini.json.gz # For quick Model and Environments validation │ ├── train/ │ ├── val_seen/ │ │ └── val_seen.json.gz │ ├── val_unseen/ │ │ └── val_unseen.json.gz │ └── embeddings.json.gz └── traj_data # training sample data for two types of scenes ├── interiornav/ │ ├── kujiale_xxxx.tar.gz │ └── ... └── r2r/ ├── traj_index/ │ ├── data/ │ ├── meta/ │ └── videos/ └── ... ``` # License and Citation All the data and code within this repo are under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). Please consider citing our project if it helps your research. ```BibTeX @misc{contributors2025internroboticsrepo, title={IROS-2025-Challenge-Nav Colosseum}, author={IROS-2025-Challenge-Nav Colosseum contributors}, howpublished={\url{https://github.com/InternRobotics/InternNav/tree/main/challenge}}, year={2025} } ```