Datasets:
Update README.md (#4)
Browse files- Update README.md (36395d7f2d290d277d9564e169cd478f6e7eb760)
Co-authored-by: Ju Huo <[email protected]>
README.md
CHANGED
|
@@ -1,138 +1,138 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
task_categories:
|
| 4 |
-
- feature-extraction
|
| 5 |
-
language:
|
| 6 |
-
- en
|
| 7 |
-
size_categories:
|
| 8 |
-
- 10M<n<100M
|
| 9 |
-
---
|
| 10 |
-
|
| 11 |
-
# `wikipedia_en`
|
| 12 |
-
|
| 13 |
-
This is a curated Wikipedia English dataset for use with the [Chipmunk](https://github.com/Intelligent-Internet/Chipmunk) project.
|
| 14 |
-
|
| 15 |
-
## Dataset Details
|
| 16 |
-
|
| 17 |
-
### Dataset Description
|
| 18 |
-
|
| 19 |
-
This dataset comprises a curated Wikipedia English pages. Data sourced directly from the official English Wikipedia database dump. We extract the pages, chunk them into smaller pieces, and embed them using [Snowflake/snowflake-arctic-embed-m-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0). All vector embeddings are 16-bit half-precision vectors optimized for `cosine` indexing with [vectorchord](https://github.com/tensorchord/vectorchord).
|
| 20 |
-
|
| 21 |
-
### Dataset Sources
|
| 22 |
-
|
| 23 |
-
Based on the [wikipedia dumps](https://dumps.wikimedia.org/). Please check this page for the [LICENSE](https://dumps.wikimedia.org/legal.html) of the page data.
|
| 24 |
-
|
| 25 |
-
## Dataset Structure
|
| 26 |
-
|
| 27 |
-
1. Metadata Table
|
| 28 |
-
|
| 29 |
-
- id: A unique identifier for the page.
|
| 30 |
-
- revid: The revision ID of the page.
|
| 31 |
-
- url: The URL of the page.
|
| 32 |
-
- title: The title of the page.
|
| 33 |
-
- ignored: Whether the page is ignored.
|
| 34 |
-
- created_at: The creation time of the page.
|
| 35 |
-
- updated_at: The update time of the page.
|
| 36 |
-
|
| 37 |
-
2. Chunking Table
|
| 38 |
-
|
| 39 |
-
- id: A unique identifier for the chunk.
|
| 40 |
-
- title: The title of the page.
|
| 41 |
-
- url: The URL of the page.
|
| 42 |
-
- source_id: The source ID of the page.
|
| 43 |
-
- chunk_index: The index of the chunk.
|
| 44 |
-
- chunk_text: The text of the chunk.
|
| 45 |
-
- vector: The vector embedding of the chunk.
|
| 46 |
-
- created_at: The creation time of the chunk.
|
| 47 |
-
- updated_at: The update time of the chunk.
|
| 48 |
-
|
| 49 |
-
## Uses
|
| 50 |
-
|
| 51 |
-
This dataset is available for a wide range of applications.
|
| 52 |
-
|
| 53 |
-
Here is a demo of how to use the dataset with [Chipmunk](https://github.com/Intelligent-Internet/Chipmunk).
|
| 54 |
-
|
| 55 |
-
### Create the metadata and chunking tables in PostgreSQL
|
| 56 |
-
|
| 57 |
-
```sql
|
| 58 |
-
CREATE TABLE IF NOT EXISTS ts_wikipedia_en (
|
| 59 |
-
id BIGSERIAL PRIMARY KEY,
|
| 60 |
-
revid BIGINT NOT NULL,
|
| 61 |
-
url VARCHAR NOT NULL,
|
| 62 |
-
title VARCHAR NOT NULL DEFAULT '',
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
);
|
| 67 |
-
|
| 68 |
-
CREATE TABLE IF NOT EXISTS ts_wikipedia_en_embed (
|
| 69 |
-
id BIGSERIAL PRIMARY KEY,
|
| 70 |
-
title VARCHAR NOT NULL,
|
| 71 |
-
url VARCHAR NOT NULL,
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
vector halfvec(768) DEFAULT NULL,
|
| 76 |
-
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
| 77 |
-
updated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
|
| 78 |
-
);
|
| 79 |
-
```
|
| 80 |
-
|
| 81 |
-
### Load csv files to database
|
| 82 |
-
|
| 83 |
-
1. Load the dataset from local file system to a remote PostgreSQL server:
|
| 84 |
-
|
| 85 |
-
```sql
|
| 86 |
-
\copy ts_wikipedia_en FROM 'data/meta/ts_wikipedia_en.csv' CSV HEADER;
|
| 87 |
-
\copy ts_wikipedia_en_embed FROM 'data/chunks/0000000.csv' CSV HEADER;
|
| 88 |
-
\copy ts_wikipedia_en_embed FROM 'data/chunks/0000001.csv' CSV HEADER;
|
| 89 |
-
\copy ts_wikipedia_en_embed FROM 'data/chunks/0000002.csv' CSV HEADER;
|
| 90 |
-
...
|
| 91 |
-
```
|
| 92 |
-
|
| 93 |
-
2. Load the dataset from the PostgreSQL server's file system:
|
| 94 |
-
|
| 95 |
-
```sql
|
| 96 |
-
copy ts_wikipedia_en FROM 'data/meta/ts_wikipedia_en.csv' CSV HEADER;
|
| 97 |
-
copy ts_wikipedia_en_embed FROM 'data/chunks/0000000.csv' CSV HEADER;
|
| 98 |
-
copy ts_wikipedia_en_embed FROM 'data/chunks/0000001.csv' CSV HEADER;
|
| 99 |
-
copy ts_wikipedia_en_embed FROM 'data/chunks/0000002.csv' CSV HEADER;
|
| 100 |
-
...
|
| 101 |
-
```
|
| 102 |
-
|
| 103 |
-
### Create Indexes
|
| 104 |
-
|
| 105 |
-
You need to create the following indexes for the best performance.
|
| 106 |
-
|
| 107 |
-
The `vector` column is a halfvec(768) column, which is a 16-bit half-precision vector optimized for `cosine` indexing with [vectorchord](https://github.com/tensorchord/vectorchord). You can get more information about the vector index from the [vectorchord](https://docs.vectorchord.ai/vectorchord/usage/indexing.html) documentation.
|
| 108 |
-
|
| 109 |
-
1. Create the metadata table index:
|
| 110 |
-
|
| 111 |
-
```sql
|
| 112 |
-
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_revid_index ON ts_wikipedia_en (revid);
|
| 113 |
-
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_url_index ON ts_wikipedia_en (url);
|
| 114 |
-
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_title_index ON ts_wikipedia_en (title);
|
| 115 |
-
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_ignored_index ON ts_wikipedia_en (ignored);
|
| 116 |
-
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_created_at_index ON ts_wikipedia_en (created_at);
|
| 117 |
-
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_updated_at_index ON ts_wikipedia_en (updated_at);
|
| 118 |
-
```
|
| 119 |
-
2. Create the chunking table index:
|
| 120 |
-
|
| 121 |
-
```sql
|
| 122 |
-
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_embed_source_id_index ON ts_wikipedia_en_embed (source_id);
|
| 123 |
-
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_embed_chunk_index_index ON ts_wikipedia_en_embed (chunk_index);
|
| 124 |
-
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_embed_chunk_text_index ON ts_wikipedia_en_embed USING bm25 (id, title, chunk_text) WITH (key_field='id');
|
| 125 |
-
CREATE UNIQUE INDEX IF NOT EXISTS ts_wikipedia_en_embed_source_index ON ts_wikipedia_en_embed (source_id, chunk_index);
|
| 126 |
-
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_embed_vector_index ON ts_wikipedia_en_embed USING vchordrq (vector halfvec_cosine_ops) WITH (options = $$
|
| 127 |
-
[build.internal]
|
| 128 |
-
lists = [20000]
|
| 129 |
-
build_threads = 6
|
| 130 |
-
spherical_centroids = true
|
| 131 |
-
$$);
|
| 132 |
-
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_embed_vector_null_index ON ts_wikipedia_en_embed (vector) WHERE vector IS NULL;
|
| 133 |
-
SELECT vchordrq_prewarm('ts_wikipedia_en_embed_vector_index');
|
| 134 |
-
```
|
| 135 |
-
|
| 136 |
-
### Query with Chipmunk
|
| 137 |
-
|
| 138 |
-
Click this link to learn how to query the dataset with [Chipmunk](https://github.com/Intelligent-Internet/Chipmunk).
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- feature-extraction
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
size_categories:
|
| 8 |
+
- 10M<n<100M
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# `wikipedia_en`
|
| 12 |
+
|
| 13 |
+
This is a curated Wikipedia English dataset for use with the [Chipmunk](https://github.com/Intelligent-Internet/Chipmunk) project.
|
| 14 |
+
|
| 15 |
+
## Dataset Details
|
| 16 |
+
|
| 17 |
+
### Dataset Description
|
| 18 |
+
|
| 19 |
+
This dataset comprises a curated Wikipedia English pages. Data sourced directly from the official English Wikipedia database dump. We extract the pages, chunk them into smaller pieces, and embed them using [Snowflake/snowflake-arctic-embed-m-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0). All vector embeddings are 16-bit half-precision vectors optimized for `cosine` indexing with [vectorchord](https://github.com/tensorchord/vectorchord).
|
| 20 |
+
|
| 21 |
+
### Dataset Sources
|
| 22 |
+
|
| 23 |
+
Based on the [wikipedia dumps](https://dumps.wikimedia.org/). Please check this page for the [LICENSE](https://dumps.wikimedia.org/legal.html) of the page data.
|
| 24 |
+
|
| 25 |
+
## Dataset Structure
|
| 26 |
+
|
| 27 |
+
1. Metadata Table
|
| 28 |
+
|
| 29 |
+
- id: A unique identifier for the page.
|
| 30 |
+
- revid: The revision ID of the page.
|
| 31 |
+
- url: The URL of the page.
|
| 32 |
+
- title: The title of the page.
|
| 33 |
+
- ignored: Whether the page is ignored.
|
| 34 |
+
- created_at: The creation time of the page.
|
| 35 |
+
- updated_at: The update time of the page.
|
| 36 |
+
|
| 37 |
+
2. Chunking Table
|
| 38 |
+
|
| 39 |
+
- id: A unique identifier for the chunk.
|
| 40 |
+
- title: The title of the page.
|
| 41 |
+
- url: The URL of the page.
|
| 42 |
+
- source_id: The source ID of the page.
|
| 43 |
+
- chunk_index: The index of the chunk.
|
| 44 |
+
- chunk_text: The text of the chunk.
|
| 45 |
+
- vector: The vector embedding of the chunk.
|
| 46 |
+
- created_at: The creation time of the chunk.
|
| 47 |
+
- updated_at: The update time of the chunk.
|
| 48 |
+
|
| 49 |
+
## Uses
|
| 50 |
+
|
| 51 |
+
This dataset is available for a wide range of applications.
|
| 52 |
+
|
| 53 |
+
Here is a demo of how to use the dataset with [Chipmunk](https://github.com/Intelligent-Internet/Chipmunk).
|
| 54 |
+
|
| 55 |
+
### Create the metadata and chunking tables in PostgreSQL
|
| 56 |
+
|
| 57 |
+
```sql
|
| 58 |
+
CREATE TABLE IF NOT EXISTS ts_wikipedia_en (
|
| 59 |
+
id BIGSERIAL PRIMARY KEY,
|
| 60 |
+
revid BIGINT NOT NULL,
|
| 61 |
+
url VARCHAR NOT NULL,
|
| 62 |
+
title VARCHAR NOT NULL DEFAULT '',
|
| 63 |
+
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
| 64 |
+
updated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
| 65 |
+
ignored BOOLEAN NOT NULL DEFAULT FALSE
|
| 66 |
+
);
|
| 67 |
+
|
| 68 |
+
CREATE TABLE IF NOT EXISTS ts_wikipedia_en_embed (
|
| 69 |
+
id BIGSERIAL PRIMARY KEY,
|
| 70 |
+
title VARCHAR NOT NULL,
|
| 71 |
+
url VARCHAR NOT NULL,
|
| 72 |
+
chunk_index BIGINT NOT NULL,
|
| 73 |
+
chunk_text VARCHAR NOT NULL,
|
| 74 |
+
source_id BIGINT NOT NULL,
|
| 75 |
+
vector halfvec(768) DEFAULT NULL,
|
| 76 |
+
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
| 77 |
+
updated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
|
| 78 |
+
);
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
### Load csv files to database
|
| 82 |
+
|
| 83 |
+
1. Load the dataset from local file system to a remote PostgreSQL server:
|
| 84 |
+
|
| 85 |
+
```sql
|
| 86 |
+
\copy ts_wikipedia_en FROM 'data/meta/ts_wikipedia_en.csv' CSV HEADER;
|
| 87 |
+
\copy ts_wikipedia_en_embed FROM 'data/chunks/0000000.csv' CSV HEADER;
|
| 88 |
+
\copy ts_wikipedia_en_embed FROM 'data/chunks/0000001.csv' CSV HEADER;
|
| 89 |
+
\copy ts_wikipedia_en_embed FROM 'data/chunks/0000002.csv' CSV HEADER;
|
| 90 |
+
...
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
2. Load the dataset from the PostgreSQL server's file system:
|
| 94 |
+
|
| 95 |
+
```sql
|
| 96 |
+
copy ts_wikipedia_en FROM 'data/meta/ts_wikipedia_en.csv' CSV HEADER;
|
| 97 |
+
copy ts_wikipedia_en_embed FROM 'data/chunks/0000000.csv' CSV HEADER;
|
| 98 |
+
copy ts_wikipedia_en_embed FROM 'data/chunks/0000001.csv' CSV HEADER;
|
| 99 |
+
copy ts_wikipedia_en_embed FROM 'data/chunks/0000002.csv' CSV HEADER;
|
| 100 |
+
...
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
### Create Indexes
|
| 104 |
+
|
| 105 |
+
You need to create the following indexes for the best performance.
|
| 106 |
+
|
| 107 |
+
The `vector` column is a halfvec(768) column, which is a 16-bit half-precision vector optimized for `cosine` indexing with [vectorchord](https://github.com/tensorchord/vectorchord). You can get more information about the vector index from the [vectorchord](https://docs.vectorchord.ai/vectorchord/usage/indexing.html) documentation.
|
| 108 |
+
|
| 109 |
+
1. Create the metadata table index:
|
| 110 |
+
|
| 111 |
+
```sql
|
| 112 |
+
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_revid_index ON ts_wikipedia_en (revid);
|
| 113 |
+
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_url_index ON ts_wikipedia_en (url);
|
| 114 |
+
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_title_index ON ts_wikipedia_en (title);
|
| 115 |
+
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_ignored_index ON ts_wikipedia_en (ignored);
|
| 116 |
+
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_created_at_index ON ts_wikipedia_en (created_at);
|
| 117 |
+
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_updated_at_index ON ts_wikipedia_en (updated_at);
|
| 118 |
+
```
|
| 119 |
+
2. Create the chunking table index:
|
| 120 |
+
|
| 121 |
+
```sql
|
| 122 |
+
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_embed_source_id_index ON ts_wikipedia_en_embed (source_id);
|
| 123 |
+
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_embed_chunk_index_index ON ts_wikipedia_en_embed (chunk_index);
|
| 124 |
+
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_embed_chunk_text_index ON ts_wikipedia_en_embed USING bm25 (id, title, chunk_text) WITH (key_field='id');
|
| 125 |
+
CREATE UNIQUE INDEX IF NOT EXISTS ts_wikipedia_en_embed_source_index ON ts_wikipedia_en_embed (source_id, chunk_index);
|
| 126 |
+
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_embed_vector_index ON ts_wikipedia_en_embed USING vchordrq (vector halfvec_cosine_ops) WITH (options = $$
|
| 127 |
+
[build.internal]
|
| 128 |
+
lists = [20000]
|
| 129 |
+
build_threads = 6
|
| 130 |
+
spherical_centroids = true
|
| 131 |
+
$$);
|
| 132 |
+
CREATE INDEX IF NOT EXISTS ts_wikipedia_en_embed_vector_null_index ON ts_wikipedia_en_embed (vector) WHERE vector IS NULL;
|
| 133 |
+
SELECT vchordrq_prewarm('ts_wikipedia_en_embed_vector_index');
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
### Query with Chipmunk
|
| 137 |
+
|
| 138 |
+
Click this link to learn how to query the dataset with [Chipmunk](https://github.com/Intelligent-Internet/Chipmunk).
|