Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Tags:
code
Libraries:
Datasets
Dask
License:
qyhfrank commited on
Commit
ad970f4
·
1 Parent(s): 425b58a

Update README

Browse files
Files changed (1) hide show
  1. README.md +124 -0
README.md CHANGED
@@ -174,4 +174,128 @@ configs:
174
  data_files:
175
  - split: test
176
  path: data/test-*
 
 
 
 
 
 
 
 
 
 
177
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
  data_files:
175
  - split: test
176
  path: data/test-*
177
+ license: apache-2.0
178
+ task_categories:
179
+ - question-answering
180
+ language:
181
+ - en
182
+ tags:
183
+ - code
184
+ pretty_name: EffiBench-X
185
+ size_categories:
186
+ - n<1K
187
  ---
188
+ # Dataset Card for EffiBench-X
189
+
190
+ **EffiBench-X** is the first multi-language benchmark designed specifically to evaluate the efficiency of LLM-generated code across six programming languages: Python, C++, Java, JavaScript, Ruby, and Golang. The dataset comprises 623 competitive programming problems sourced from platforms released after October 2023 to mitigate data contamination, paired with human expert solutions as efficiency baselines.
191
+
192
+ ## Dataset Details
193
+
194
+ ### Dataset Description
195
+
196
+ EffiBench-X addresses critical limitations in existing code generation benchmarks by providing:
197
+ - **Multi-language evaluation** across Python, C++, Java, JavaScript, Ruby, and Golang
198
+ - **Efficiency-focused metrics** including execution time, memory peak, and memory integral
199
+ - **Recent competitive programming problems** (post-October 2023) to avoid data contamination
200
+ - **Human expert baselines** for reliable efficiency comparison
201
+
202
+ - **Curated by:** Yuhao Qing, Boyu Zhu, Mingzhe Du, Zhijiang Guo, Terry Yue Zhuo, Qianru Zhang, Jie M. Zhang, Heming Cui, Siu-Ming Yiu, Dong Huang, See-Kiong Ng, Luu Anh Tuan
203
+ - **Institutions:** HKU, UCL, NTU, NUS, HKUST, Monash University, CSIRO's Data61, KCL
204
+ - **Language(s) (NLP):** English
205
+ - **License:** Apache License 2.0
206
+
207
+ ### Dataset Sources
208
+
209
+ - **Repository:** [EffiBench-X (GitHub)](https://github.com/EffiBench/EffiBench-X)
210
+ - **Dataset:** [EffiBench/effibench-x](https://huggingface.co/datasets/EffiBench/effibench-x)
211
+ - **Paper:** [arXiv:2505.13004](https://arxiv.org/abs/2505.13004)
212
+ - **Problem Sources:**
213
+ - [LeetCode](https://leetcode.com)
214
+ - [Aizu Online Judge](https://onlinejudge.u-aizu.ac.jp/)
215
+ - [AtCoder](https://atcoder.jp)
216
+ - [CodeChef](https://www.codechef.com)
217
+ - [Codeforces](https://codeforces.com)
218
+
219
+ ## Uses
220
+
221
+ ### Direct Use
222
+
223
+ - **Benchmarking LLM code generation efficiency**: Evaluate models on runtime performance, memory usage, and correctness across multiple languages
224
+ - **Cross-language performance analysis**: Compare model capabilities across different programming paradigms
225
+ - **Model development**: Train and fine-tune models for efficient code generation
226
+ - **Research**: Study efficiency gaps between LLM-generated and human expert code
227
+
228
+ ### Out-of-Scope Use
229
+
230
+ - **Production deployment without validation**: Solutions should be verified before production use
231
+ - **Security-critical applications**: The dataset focuses on algorithmic efficiency, not security
232
+ - **Non-competitive programming domains**: Problems are algorithmic in nature and may not represent all software engineering contexts
233
+
234
+ ## Dataset Structure
235
+
236
+ The dataset contains 623 problems categorized into:
237
+ - **Functional problems**: Implement specific functions/classes with I/O handled by test templates
238
+ - **Standard I/O problems**: Complete programs reading from stdin and writing to stdout
239
+
240
+ Key fields per record include:
241
+
242
+ - `id`, `title`, `title_slug`, `description`, `description_md`, `difficulty`, `tags`, `source`, `url`, `type`
243
+ - Limits: `time_limit_nanos`, `memory_limit_bytes`
244
+ - Code artifacts:
245
+ - `starter_code`: language-keyed starter snippets
246
+ - `solutions`: language-keyed canonical solutions (e.g., for `cpp`, `golang`, `java`, `javascript`, `python3`, `ruby`)
247
+ - `test_case_generator`: executable code string that programmatically produces tests
248
+ - `evaluator`: executable code string to determine pass/fail given expected vs. program output
249
+ - `generated_tests`: serialized tests produced by the generator
250
+ - `test_runners`: language-keyed runner templates for executing solutions
251
+
252
+ All problems are from competitive programming platforms, with release dates after October 2023 to minimize data contamination.
253
+
254
+ ## Dataset Creation
255
+
256
+ ### Curation Rationale
257
+
258
+ Existing code generation benchmarks primarily focus on functional correctness with limited attention to efficiency, often restricted to Python. EffiBench-X addresses three critical limitations:
259
+
260
+ 1. **Language diversity**: Extends beyond Python to include statically-typed (C++, Java, Go) and dynamically-typed languages (Python, JavaScript, Ruby)
261
+ 2. **Data contamination**: Uses recent problems (post-October 2023) to avoid memorization effects
262
+ 3. **Complexity**: Features algorithmically challenging problems requiring optimization techniques
263
+
264
+ ### Source Data
265
+
266
+ #### Data Collection and Processing
267
+
268
+ Problems are curated from competitive programming platforms released after October 2023 to minimize data contamination. Each problem includes:
269
+ - Human expert solutions verified for correctness and efficiency
270
+ - 100 programmatically generated test cases
271
+ - Test runners and evaluators for automated assessment
272
+ - Cross-language validation to ensure consistency
273
+
274
+ #### Who are the source data producers?
275
+
276
+ - **Problem creators**: Competitive programming platforms and contest organizers
277
+ - **Solution authors**: Human expert programmers from competitive programming communities
278
+ - **Dataset curators**: EffiBench research team
279
+
280
+ ## Citation
281
+
282
+ Please cite our paper if you use this dataset:
283
+
284
+ ```bibtex
285
+ @article{qing2025effibench,
286
+ title={EffiBench-X: A Multi-Language Benchmark for Measuring Efficiency of LLM-Generated Code},
287
+ author={Qing, Yuhao and Zhu, Boyu and Du, Mingzhe and Guo, Zhijiang and Zhuo, Terry Yue and Zhang, Qianru and Zhang, Jie M and Cui, Heming and Yiu, Siu-Ming and Huang, Dong and Ng, See-Kiong and Tuan, Luu Anh},
288
+ journal={Advances in neural information processing systems},
289
+ year={2025}
290
+ }
291
+ ```
292
+
293
+ ## More Information
294
+
295
+ - **Dataset Statistics**: 623 problems, 100 test cases per problem, 6 languages
296
+ - **Evaluation**: Sandboxed execution environment for consistent performance measurements
297
+ - For detailed information and benchmark results, please refer to the [paper](https://arxiv.org/abs/2505.13004) and [GitHub repository](https://github.com/EffiBench/EffiBench-X)
298
+
299
+ ## Dataset Card Contact
300
+
301
+ For questions and feedback, please open an issue on our [GitHub repository](https://github.com/EffiBench/EffiBench-X).