Upload preprocess.py
Browse files- preprocess.py +262 -0
preprocess.py
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from zipfile import ZipFile, ZIP_DEFLATED
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
import copy
|
| 5 |
+
import zipfile
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
import re
|
| 8 |
+
from collections import Counter
|
| 9 |
+
from shutil import rmtree
|
| 10 |
+
from convlab.util.file_util import read_zipped_json, write_zipped_json
|
| 11 |
+
from pprint import pprint
|
| 12 |
+
import random
|
| 13 |
+
import glob
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
descriptions = {
|
| 17 |
+
'movie': 'Book movie tickets for the user',
|
| 18 |
+
'name.movie': 'Name of the movie, e.g. Joker, Parasite, The Avengers',
|
| 19 |
+
'name.theater': 'Name of the theater, e.g. Century City, AMC Mercado 20',
|
| 20 |
+
'num.tickets': 'Number of tickets, e.g. two, me and my friend, John and I',
|
| 21 |
+
'time.preference': 'Preferred time or range, e.g. around 2pm, later in the evening, 4:30pm',
|
| 22 |
+
'time.showing': 'The showtimes published by the theater, e.g. 5:10pm, 8:30pm',
|
| 23 |
+
'date.showing': 'the date or day of the showing, e.g. today, tonight, tomrrow, April 12th.',
|
| 24 |
+
'location': 'The city, or city and state, zip code and sometimes more specific regions, e.g. downtown',
|
| 25 |
+
'type.screening': 'IMAX, Dolby, 3D, standard, or similar phrases for technology offerings',
|
| 26 |
+
'seating': 'Various phrases from specific "row 1" to "near the back", "on an aisle", etc.',
|
| 27 |
+
'date.release': 'Movie attribute published for the official movie release date.',
|
| 28 |
+
'price.ticket': 'Price per ticket',
|
| 29 |
+
'price.total': 'The total for the purchase of all tickets',
|
| 30 |
+
'name.genre': 'Includes a wide range from classic genres like action, drama, etc. to categories like "slasher" or series like Marvel or Harry Potter',
|
| 31 |
+
'description.plot': 'The movie synopsis or shorter description',
|
| 32 |
+
'description.other': 'Any other movie description that is not captured by genre, name, plot.',
|
| 33 |
+
'duration.movie': 'The movie runtime, e.g. 120 minutes',
|
| 34 |
+
'name.person': 'Names of actors, directors, producers but NOT movie characters',
|
| 35 |
+
'name.character': 'Character names like James Bond, Harry Potter, Wonder Woman',
|
| 36 |
+
'review.audience': 'The audience review',
|
| 37 |
+
'review.critic': 'Critic reviews like those from Rotten Tomatoes, IMDB, etc.',
|
| 38 |
+
'rating.movie': 'G, PG, PG-13, R, etc.',
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
anno2slot = {
|
| 42 |
+
"movie": {
|
| 43 |
+
"description.other": False, # transform to binary dialog act
|
| 44 |
+
"description.plot": False, # too long, 19 words in avg. transform to binary dialog act
|
| 45 |
+
}
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def format_turns(ori_turns):
|
| 50 |
+
# delete invalid turns and merge continuous turns
|
| 51 |
+
new_turns = []
|
| 52 |
+
previous_speaker = None
|
| 53 |
+
utt_idx = 0
|
| 54 |
+
for i, turn in enumerate(ori_turns):
|
| 55 |
+
speaker = 'system' if turn['speaker'].upper() == 'ASSISTANT' else 'user'
|
| 56 |
+
turn['speaker'] = speaker
|
| 57 |
+
if turn['text'] == '(deleted)':
|
| 58 |
+
continue
|
| 59 |
+
if not previous_speaker:
|
| 60 |
+
# first turn
|
| 61 |
+
assert speaker != previous_speaker
|
| 62 |
+
if speaker != previous_speaker:
|
| 63 |
+
# switch speaker
|
| 64 |
+
previous_speaker = speaker
|
| 65 |
+
new_turns.append(copy.deepcopy(turn))
|
| 66 |
+
utt_idx += 1
|
| 67 |
+
else:
|
| 68 |
+
# continuous speaking of the same speaker
|
| 69 |
+
last_turn = new_turns[-1]
|
| 70 |
+
# skip repeated turn
|
| 71 |
+
if turn['text'] in ori_turns[i-1]['text']:
|
| 72 |
+
continue
|
| 73 |
+
# merge continuous turns
|
| 74 |
+
index_shift = len(last_turn['text']) + 1
|
| 75 |
+
last_turn['text'] += ' '+turn['text']
|
| 76 |
+
if 'segments' in turn:
|
| 77 |
+
last_turn.setdefault('segments', [])
|
| 78 |
+
for segment in turn['segments']:
|
| 79 |
+
segment['start_index'] += index_shift
|
| 80 |
+
segment['end_index'] += index_shift
|
| 81 |
+
last_turn['segments'] += turn['segments']
|
| 82 |
+
return new_turns
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def preprocess():
|
| 86 |
+
original_data_dir = 'Taskmaster-master'
|
| 87 |
+
new_data_dir = 'data'
|
| 88 |
+
|
| 89 |
+
if not os.path.exists(original_data_dir):
|
| 90 |
+
original_data_zip = 'master.zip'
|
| 91 |
+
if not os.path.exists(original_data_zip):
|
| 92 |
+
raise FileNotFoundError(f'cannot find original data {original_data_zip} in tm3/, should manually download master.zip from https://github.com/google-research-datasets/Taskmaster/archive/refs/heads/master.zip')
|
| 93 |
+
else:
|
| 94 |
+
archive = ZipFile(original_data_zip)
|
| 95 |
+
archive.extractall()
|
| 96 |
+
|
| 97 |
+
os.makedirs(new_data_dir, exist_ok=True)
|
| 98 |
+
|
| 99 |
+
ontology = {'domains': {},
|
| 100 |
+
'intents': {
|
| 101 |
+
'inform': {'description': 'inform the value of a slot or general information.'}
|
| 102 |
+
},
|
| 103 |
+
'state': {},
|
| 104 |
+
'dialogue_acts': {
|
| 105 |
+
"categorical": {},
|
| 106 |
+
"non-categorical": {},
|
| 107 |
+
"binary": {}
|
| 108 |
+
}}
|
| 109 |
+
global descriptions
|
| 110 |
+
global anno2slot
|
| 111 |
+
ori_ontology = json.load(open(os.path.join(original_data_dir, "TM-3-2020/ontology/entities.json")))
|
| 112 |
+
assert len(ori_ontology) == 1
|
| 113 |
+
domain = list(ori_ontology.keys())[0]
|
| 114 |
+
domain_ontology = ori_ontology[domain]
|
| 115 |
+
ontology['domains'][domain] = {'description': descriptions[domain], 'slots': {}}
|
| 116 |
+
ontology['state'][domain] = {}
|
| 117 |
+
for slot in domain_ontology['required']+domain_ontology['optional']:
|
| 118 |
+
ontology['domains'][domain]['slots'][slot] = {
|
| 119 |
+
'description': descriptions[slot],
|
| 120 |
+
'is_categorical': False,
|
| 121 |
+
'possible_values': [],
|
| 122 |
+
}
|
| 123 |
+
if slot not in anno2slot[domain]:
|
| 124 |
+
ontology['state'][domain][slot] = ''
|
| 125 |
+
|
| 126 |
+
dataset = 'tm3'
|
| 127 |
+
splits = ['train', 'validation', 'test']
|
| 128 |
+
dialogues_by_split = {split:[] for split in splits}
|
| 129 |
+
data_files = sorted(glob.glob(os.path.join(original_data_dir, f"TM-3-2020/data/*.json")))
|
| 130 |
+
for data_file in tqdm(data_files, desc='processing taskmaster-{}'.format(domain)):
|
| 131 |
+
data = json.load(open(data_file))
|
| 132 |
+
# random split, train:validation:test = 8:1:1
|
| 133 |
+
random.seed(42)
|
| 134 |
+
dial_ids = list(range(len(data)))
|
| 135 |
+
random.shuffle(dial_ids)
|
| 136 |
+
dial_id2split = {}
|
| 137 |
+
for dial_id in dial_ids[:int(0.8*len(dial_ids))]:
|
| 138 |
+
dial_id2split[dial_id] = 'train'
|
| 139 |
+
for dial_id in dial_ids[int(0.8*len(dial_ids)):int(0.9*len(dial_ids))]:
|
| 140 |
+
dial_id2split[dial_id] = 'validation'
|
| 141 |
+
for dial_id in dial_ids[int(0.9*len(dial_ids)):]:
|
| 142 |
+
dial_id2split[dial_id] = 'test'
|
| 143 |
+
|
| 144 |
+
for dial_id, d in enumerate(data):
|
| 145 |
+
# delete empty dialogs and invalid dialogs
|
| 146 |
+
if len(d['utterances']) == 0:
|
| 147 |
+
continue
|
| 148 |
+
if len(set([t['speaker'] for t in d['utterances']])) == 1:
|
| 149 |
+
continue
|
| 150 |
+
data_split = dial_id2split[dial_id]
|
| 151 |
+
dialogue_id = f'{dataset}-{data_split}-{len(dialogues_by_split[data_split])}'
|
| 152 |
+
cur_domains = [domain]
|
| 153 |
+
goal = {
|
| 154 |
+
'description': d['instructions'],
|
| 155 |
+
'inform': {},
|
| 156 |
+
'request': {}
|
| 157 |
+
}
|
| 158 |
+
dialogue = {
|
| 159 |
+
'dataset': dataset,
|
| 160 |
+
'data_split': data_split,
|
| 161 |
+
'dialogue_id': dialogue_id,
|
| 162 |
+
'original_id': d["conversation_id"],
|
| 163 |
+
'domains': cur_domains,
|
| 164 |
+
'goal': goal,
|
| 165 |
+
'turns': []
|
| 166 |
+
}
|
| 167 |
+
turns = format_turns(d['utterances'])
|
| 168 |
+
prev_state = {}
|
| 169 |
+
prev_state.setdefault(domain, copy.deepcopy(ontology['state'][domain]))
|
| 170 |
+
|
| 171 |
+
for utt_idx, uttr in enumerate(turns):
|
| 172 |
+
speaker = uttr['speaker']
|
| 173 |
+
turn = {
|
| 174 |
+
'speaker': speaker,
|
| 175 |
+
'utterance': uttr['text'],
|
| 176 |
+
'utt_idx': utt_idx,
|
| 177 |
+
'dialogue_acts': {
|
| 178 |
+
'binary': [],
|
| 179 |
+
'categorical': [],
|
| 180 |
+
'non-categorical': [],
|
| 181 |
+
},
|
| 182 |
+
}
|
| 183 |
+
in_span = [0] * len(turn['utterance'])
|
| 184 |
+
|
| 185 |
+
if 'segments' in uttr:
|
| 186 |
+
# sort the span according to the length
|
| 187 |
+
segments = sorted(uttr['segments'], key=lambda x: len(x['text']))
|
| 188 |
+
for segment in segments:
|
| 189 |
+
assert len(['annotations']) == 1
|
| 190 |
+
item = segment['annotations'][0]
|
| 191 |
+
intent = 'inform' # default intent
|
| 192 |
+
slot = item['name'].strip()
|
| 193 |
+
assert slot in ontology['domains'][domain]['slots']
|
| 194 |
+
if slot in anno2slot[domain]:
|
| 195 |
+
# binary dialog act
|
| 196 |
+
turn['dialogue_acts']['binary'].append({
|
| 197 |
+
'intent': intent,
|
| 198 |
+
'domain': domain,
|
| 199 |
+
'slot': slot,
|
| 200 |
+
})
|
| 201 |
+
continue
|
| 202 |
+
assert turn['utterance'][segment['start_index']:segment['end_index']] == segment['text']
|
| 203 |
+
# skip overlapped spans, keep the shortest one
|
| 204 |
+
if sum(in_span[segment['start_index']: segment['end_index']]) > 0:
|
| 205 |
+
continue
|
| 206 |
+
else:
|
| 207 |
+
in_span[segment['start_index']: segment['end_index']] = [1]*(segment['end_index']-segment['start_index'])
|
| 208 |
+
turn['dialogue_acts']['non-categorical'].append({
|
| 209 |
+
'intent': intent,
|
| 210 |
+
'domain': domain,
|
| 211 |
+
'slot': slot,
|
| 212 |
+
'value': segment['text'],
|
| 213 |
+
'start': segment['start_index'],
|
| 214 |
+
'end': segment['end_index']
|
| 215 |
+
})
|
| 216 |
+
|
| 217 |
+
turn['dialogue_acts']['non-categorical'] = sorted(turn['dialogue_acts']['non-categorical'], key=lambda x: x['start'])
|
| 218 |
+
|
| 219 |
+
bdas = set()
|
| 220 |
+
for da in turn['dialogue_acts']['binary']:
|
| 221 |
+
da_tuple = (da['intent'], da['domain'], da['slot'],)
|
| 222 |
+
bdas.add(da_tuple)
|
| 223 |
+
turn['dialogue_acts']['binary'] = [{'intent':bda[0],'domain':bda[1],'slot':bda[2]} for bda in sorted(bdas)]
|
| 224 |
+
# add to dialogue_acts dictionary in the ontology
|
| 225 |
+
for da_type in turn['dialogue_acts']:
|
| 226 |
+
das = turn['dialogue_acts'][da_type]
|
| 227 |
+
for da in das:
|
| 228 |
+
ontology["dialogue_acts"][da_type].setdefault((da['intent'], da['domain'], da['slot']), {})
|
| 229 |
+
ontology["dialogue_acts"][da_type][(da['intent'], da['domain'], da['slot'])][speaker] = True
|
| 230 |
+
|
| 231 |
+
for da in turn['dialogue_acts']['non-categorical']:
|
| 232 |
+
slot, value = da['slot'], da['value']
|
| 233 |
+
assert slot in prev_state[domain], print(da)
|
| 234 |
+
prev_state[domain][slot] = value
|
| 235 |
+
|
| 236 |
+
if speaker == 'user':
|
| 237 |
+
turn['state'] = copy.deepcopy(prev_state)
|
| 238 |
+
else:
|
| 239 |
+
turn['db_results'] = {}
|
| 240 |
+
if 'apis' in turns[utt_idx-1]:
|
| 241 |
+
turn['db_results'].setdefault(domain, [])
|
| 242 |
+
apis = turns[utt_idx-1]['apis']
|
| 243 |
+
turn['db_results'][domain] += apis
|
| 244 |
+
|
| 245 |
+
dialogue['turns'].append(turn)
|
| 246 |
+
dialogues_by_split[data_split].append(dialogue)
|
| 247 |
+
|
| 248 |
+
for da_type in ontology['dialogue_acts']:
|
| 249 |
+
ontology["dialogue_acts"][da_type] = sorted([str({'user': speakers.get('user', False), 'system': speakers.get('system', False), 'intent':da[0],'domain':da[1], 'slot':da[2]}) for da, speakers in ontology["dialogue_acts"][da_type].items()])
|
| 250 |
+
dialogues = dialogues_by_split['train']+dialogues_by_split['validation']+dialogues_by_split['test']
|
| 251 |
+
json.dump(dialogues[:10], open(f'dummy_data.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
| 252 |
+
json.dump(ontology, open(f'{new_data_dir}/ontology.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
| 253 |
+
json.dump(dialogues, open(f'{new_data_dir}/dialogues.json', 'w', encoding='utf-8'), indent=2, ensure_ascii=False)
|
| 254 |
+
with ZipFile('data.zip', 'w', ZIP_DEFLATED) as zf:
|
| 255 |
+
for filename in os.listdir(new_data_dir):
|
| 256 |
+
zf.write(f'{new_data_dir}/{filename}')
|
| 257 |
+
rmtree(original_data_dir)
|
| 258 |
+
rmtree(new_data_dir)
|
| 259 |
+
return dialogues, ontology
|
| 260 |
+
|
| 261 |
+
if __name__ == '__main__':
|
| 262 |
+
preprocess()
|