File size: 8,110 Bytes
54c4947 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
#!/usr/bin/env python3
from __future__ import annotations
import argparse, json, re, random, sys, unicodedata, string
from pathlib import Path
from typing import List, Tuple, Dict, Optional
# ----------- Heuristics -----------
ENT_PHRASE_NONSTART = re.compile(r"(?<!^)([A-Z][a-z]+(?:\s+[A-Z][a-z]+)*)")
ENT_PHRASE_ANY = re.compile(r"([A-Z][a-z]+(?:\s+[A-Z][a-z]+)*)")
YEAR_RE = re.compile(r"\b(1[89]\d{2}|20\d{2})\b")
NUM_RE = re.compile(r"\b\d+(?:\.\d+)?\b")
SENT_SPLIT = re.compile(r"(?<=[.!?。!?])\s+|\n+")
STOPWORDS = set("""
a an and are as at be by for from has he her hers him his i in is it its of on or that the their them they this to was were will with you your
""".split())
_PUNCT = "".join(ch for ch in string.punctuation if ch not in "_-'’”‘“")
_PUNCT_RE = re.compile(f"[{re.escape(_PUNCT)}]")
def norm(s: str) -> str:
s = unicodedata.normalize("NFKC", s)
s = s.replace("“","\"").replace("”","\"").replace("’","'").replace(" ‘ ","'")
s = _PUNCT_RE.sub(" ", s)
s = re.sub(r"\s+", " ", s).strip().lower()
return s
def sentence_split(text: str) -> List[str]:
text = (text or "").strip()
if not text:
return []
return [p.strip() for p in SENT_SPLIT.split(text) if p.strip()]
def longest_word(s: str) -> Optional[str]:
toks = re.findall(r"[A-Za-z][A-Za-z\-']+", s)
toks = [t for t in toks if len(t) >= 7 and t.lower() not in STOPWORDS]
return max(toks, key=len) if toks else None
def replace_once(sent: str, ans: str) -> Optional[str]:
idx = sent.find(ans)
if idx == -1:
# try case-insensitive
m = re.search(re.escape(ans), sent, flags=re.IGNORECASE)
if not m:
return None
idx = m.start()
ans = sent[m.start():m.end()]
return sent[:idx] + "____" + sent[idx+len(ans):]
def cloze_candidates_for_sentence(s: str) -> List[Tuple[str,str]]:
cands: List[Tuple[str,str]] = []
# 1) Proper noun phrase not at start
m = ENT_PHRASE_NONSTART.search(s)
if m:
ans = m.group(1).strip()
if 2 <= len(ans) <= 80:
q = replace_once(s, ans)
if q and q != s:
cands.append((q, ans))
# 2) Proper noun phrase anywhere
if not cands:
m = ENT_PHRASE_ANY.search(s)
if m:
ans = m.group(1).strip()
if 2 <= len(ans) <= 80:
q = replace_once(s, ans)
if q and q != s:
cands.append((q, ans))
# 3) Year
if not cands:
m = YEAR_RE.search(s)
if m:
ans = m.group(0)
q = replace_once(s, ans)
if q and q != s:
cands.append((q, ans))
# 4) Number
if not cands:
m = NUM_RE.search(s)
if m:
ans = m.group(0)
q = replace_once(s, ans)
if q and q != s:
cands.append((q, ans))
# 5) Long word fallback
if not cands:
lw = longest_word(s)
if lw:
ans = lw
q = replace_once(s, ans)
if q and q != s:
cands.append((q, ans))
# Avoid silly blanks
cands = [(q, a) for (q, a) in cands if "____" in q and 1 <= len(a) <= 80]
return cands
def generate_doc_qas(doc: Dict, need: int, global_seen: set, rng: random.Random, dedupe_global: bool) -> List[Dict]:
"""Return exactly `need` QAs for this doc.
Always enforce per-doc uniqueness; enforce global uniqueness only if dedupe_global=True.
"""
sents: List[str] = doc["sentences"]
idxs = list(range(len(sents)))
rng.shuffle(idxs)
picked: List[Dict] = []
local_seen = set()
def try_add(sid: int, q: str, a: str) -> bool:
key = (norm(q), norm(a))
if key in local_seen:
return False
if dedupe_global and key in global_seen:
return False
picked.append({
"doc_id": doc["doc_id"],
"sent_id": sid,
"title": doc.get("title",""),
"question": q,
"answer": a
})
local_seen.add(key)
if dedupe_global:
global_seen.add(key)
return True
# pass 1: heuristic cloze candidates
for sid in idxs:
if len(picked) >= need:
break
for (q, a) in cloze_candidates_for_sentence(sents[sid]):
if try_add(sid, q, a) and len(picked) >= need:
break
# pass 2: deterministic fallback (longest-word cloze)
if len(picked) < need:
for sid in range(len(sents)):
if len(picked) >= need:
break
s = sents[sid]
lw = longest_word(s)
if not lw:
continue
q = replace_once(s, lw)
if not q or q == s:
continue
try_add(sid, q, lw)
# pass 3: ultra fallback — mask a year or number even if short
if len(picked) < need:
for sid in range(len(sents)):
if len(picked) >= need:
break
s = sents[sid]
m = YEAR_RE.search(s) or NUM_RE.search(s)
if not m:
continue
ans = m.group(0)
q = replace_once(s, ans)
if not q or q == s:
continue
try_add(sid, q, ans)
return picked[:need]
# ----------- IO / Main -----------
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--docs_path", type=str, default="data/wt2raw/train/docs.jsonl",
help="Input docs.jsonl (expects fields: doc_id, title, sentences[list[str]])")
ap.add_argument("--out_path", type=str, default="data/wt2raw/train/qa.jsonl",
help="Output qa.jsonl")
ap.add_argument("--seed", type=int, default=42)
ap.add_argument("--docs_expected", type=int, default=5135, help="Expected number of docs")
ap.add_argument("--q_per_doc", type=int, default=3, help="Questions per doc (fixed)")
ap.add_argument("--dedupe_global", action="store_true",
help="If set, avoid duplicate (question, answer) pairs across the entire split. "
"By default only per-doc de-duplication is enforced.")
args = ap.parse_args()
rng = random.Random(args.seed)
docs: List[Dict] = []
with open(args.docs_path, "r", encoding="utf-8") as f:
for line in f:
if not line.strip():
continue
d = json.loads(line)
# Coerce sentences if someone saved text:
if "sentences" not in d or not isinstance(d["sentences"], list):
txt = d.get("text") or d.get("content") or ""
d["sentences"] = sentence_split(txt)
if len(d["sentences"]) >= 3:
docs.append(d)
if args.docs_expected and len(docs) != args.docs_expected:
print(f"[warn] docs count = {len(docs)} (expected {args.docs_expected}). Continuing anyway.", file=sys.stderr)
total_needed = len(docs) * args.q_per_doc
out_path = Path(args.out_path)
out_path.parent.mkdir(parents=True, exist_ok=True)
global_seen = set()
written = 0
with open(out_path, "w", encoding="utf-8") as fout:
for d in docs:
qas = generate_doc_qas(
d, need=args.q_per_doc,
global_seen=global_seen,
rng=rng,
dedupe_global=args.dedupe_global
)
# last-resort assert: if still short, fail loudly
if len(qas) < args.q_per_doc:
print(f"[error] Could not produce {args.q_per_doc} unique QAs for doc_id={d['doc_id']}", file=sys.stderr)
sys.exit(1)
for qa in qas:
fout.write(json.dumps(qa, ensure_ascii=False) + "\n")
written += 1
if written != total_needed:
print(f"[error] Wrote {written} but needed {total_needed}.", file=sys.stderr)
sys.exit(2)
print(f"Saved {len(docs)} docs × {args.q_per_doc} = {written} QAs to {out_path}")
if __name__ == "__main__":
main()
|