File size: 7,219 Bytes
0beddd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 15,
      "metadata": {
        "id": "mSG4QdpNvio4"
      },
      "outputs": [],
      "source": []
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install kenlm"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "f3jTUbzZv442",
        "outputId": "76eb7e32-227b-4cef-a20f-38ae936c4d8a"
      },
      "execution_count": 16,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Requirement already satisfied: kenlm in /usr/local/lib/python3.12/dist-packages (0.3.0)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from huggingface_hub import hf_hub_download\n",
        "import kenlm\n",
        "\n",
        "# Step 1: Download the .arpa file from the dataset repository\n",
        "print(\"Downloading KenLM ARPA file from Hugging Face Dataset...\")\n",
        "model_path = hf_hub_download(\n",
        "    repo_id=\"BeitTigreAI/tigre-data-kenLM\",\n",
        "    filename=\"tigre-data-kenLM.arpa\",\n",
        "    repo_type=\"dataset\",  # 🔑 This is critical! It's a dataset repo, not a model\n",
        "    local_dir=\"./kenlm_model\"\n",
        ")\n",
        "\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Q8KTpqAqvj4d",
        "outputId": "6fface0f-230d-49a6-ea02-02ab06850f46"
      },
      "execution_count": 17,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Downloading KenLM ARPA file from Hugging Face Dataset...\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import kenlm\n",
        "\n",
        "# Load the language model\n",
        "model = kenlm.Model(model_path)\n",
        "\n",
        "# Example sentences\n",
        "sentences = [\n",
        "    \"አነ ምሩር ህሌኮ ምን ኪደትለ አፌተ\",\n",
        "    \"እብ ረቢኩም ምን ተአምኖ፡ ለወለት ልብዬ ወዕንቼተ\",\n",
        "    \"ህተ ትብል ሑዬቱ ወአነ እብል ሕቼተ\"\n",
        "]\n",
        "\n",
        "def test_sentence(sentence):\n",
        "    log_prob = model.score(sentence)\n",
        "    perplexity = model.perplexity(sentence)\n",
        "    print(f\"Sentence: {sentence}\")\n",
        "    print(f\"Log10 Probability: {log_prob:.4f}\")\n",
        "    print(f\"Perplexity: {perplexity:.4f}\")\n",
        "    print(\"-\" * 50)\n",
        "\n",
        "for sent in sentences:\n",
        "    test_sentence(sent)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "UHem-Q4Kvslb",
        "outputId": "d9a947a0-01ae-402f-e592-0a9c6951d962"
      },
      "execution_count": 18,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Sentence: አነ ምሩር ህሌኮ ምን ኪደትለ አፌተ\n",
            "Log10 Probability: -27.5345\n",
            "Perplexity: 8580.2515\n",
            "--------------------------------------------------\n",
            "Sentence: እብ ረቢኩም ምን ተአምኖ፡ ለወለት ልብዬ ወዕንቼተ\n",
            "Log10 Probability: -34.3204\n",
            "Perplexity: 19500.8208\n",
            "--------------------------------------------------\n",
            "Sentence: ህተ ትብል ሑዬቱ ወአነ እብል ሕቼተ\n",
            "Log10 Probability: -28.4631\n",
            "Perplexity: 11645.5115\n",
            "--------------------------------------------------\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "<!DOCTYPE html>\n",
        "<html lang=\"en\">\n",
        "<head>\n",
        "  <meta charset=\"UTF-8\" />\n",
        "  <meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\"/>\n",
        "  <title>Tigre LM Output Explanation</title>\n",
        "  <style>\n",
        "    body {\n",
        "      font-family: Arial, sans-serif;\n",
        "      line-height: 1.6;\n",
        "      color: #333;\n",
        "      max-width: 600px;\n",
        "      margin: 2rem auto;\n",
        "      padding: 1rem;\n",
        "    }\n",
        "    h2 {\n",
        "      color: #2c3e50;\n",
        "      border-bottom: 2px solid #3498db;\n",
        "      padding-bottom: 0.3em;\n",
        "    }\n",
        "    table {\n",
        "      width: 100%;\n",
        "      border-collapse: collapse;\n",
        "      margin: 1.2em 0;\n",
        "    }\n",
        "    th, td {\n",
        "      padding: 0.8em;\n",
        "      text-align: left;\n",
        "      border-bottom: 1px solid #ddd;\n",
        "    }\n",
        "    th {\n",
        "      background-color: #f2f2f2;\n",
        "      font-weight: bold;\n",
        "    }\n",
        "    ul {\n",
        "      margin: 0.5em 0;\n",
        "      padding-left: 1.5em;\n",
        "    }\n",
        "    .checkmark {\n",
        "      color: #27ae60;\n",
        "      font-weight: bold;\n",
        "    }\n",
        "  </style>\n",
        "</head>\n",
        "<body>\n",
        "\n",
        "  <h2>Understanding the Output</h2>\n",
        "\n",
        "  <table>\n",
        "    <tr>\n",
        "      <th>Score</th>\n",
        "      <th>Meaning</th>\n",
        "      <th>Ideal</th>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <td><strong>Log10 Probability</strong></td>\n",
        "      <td>Log of sentence probability. Higher (less negative) = more fluent.</td>\n",
        "      <td>Closer to 0</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <td><strong>Perplexity</strong></td>\n",
        "      <td>Measures surprise. Lower = more natural.</td>\n",
        "      <td>As low as possible</td>\n",
        "    </tr>\n",
        "    <tr>\n",
        "      <td><strong>OOV</strong><br><em>(in word scores)</em></td>\n",
        "      <td><code>True</code> = word not in vocabulary. Affects confidence.<br>\n",
        "          <code>False</code> = word is known.</td>\n",
        "      <td><code>False</code></td>\n",
        "    </tr>\n",
        "  </table>\n",
        "\n",
        "  <p><span class=\"checkmark\">✅ Use this to:</span></p>\n",
        "  <ul>\n",
        "    <li>Compare fluency of different sentences</li>\n",
        "    <li>Rescore ASR outputs</li>\n",
        "    <li>Detect unnatural or grammatically odd phrases</li>\n",
        "  </ul>\n",
        "\n",
        "</body>\n",
        "</html>"
      ],
      "metadata": {
        "id": "AF6K4_3R0wlM"
      }
    }
  ]
}