Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
code
Size:
10K<n<100K
ArXiv:
Tags:
code
License:
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """TACO dataset.""" | |
| import json | |
| import datasets | |
| _REPO_NAME = "BAAI/TACO" | |
| _CITATION = """ | |
| """ | |
| _DESCRIPTION = """ | |
| TACO is a benchmark for Python code generation, it includes 25443 problems and 1000 problems for train and test splits. | |
| """ | |
| _HOMEPAGE = "https://github.com/FlagOpen/TACO" | |
| _DIFFICULTY = ["EASY", "MEDIUM", "MEDIUM_HARD", "HARD", "VERY_HARD"] | |
| _DIFFICULTY_CONFIGS = ["ALL"] + _DIFFICULTY | |
| _SKILL = ['Data structures', 'Sorting', 'Range queries', 'Complete search', 'Amortized analysis', 'Dynamic programming', 'Bit manipulation', 'Greedy algorithms'] | |
| _SKILL_CONFIGS = ["ALL"] + _SKILL | |
| _URLS = { | |
| "train": ['train/data-00000-of-00009.arrow', 'train/data-00001-of-00009.arrow', 'train/data-00002-of-00009.arrow', 'train/data-00003-of-00009.arrow', 'train/data-00004-of-00009.arrow', 'train/data-00005-of-00009.arrow', 'train/data-00006-of-00009.arrow', 'train/data-00007-of-00009.arrow', 'train/data-00008-of-00009.arrow'], | |
| "test": ['test/data-00000-of-00001.arrow'], | |
| } | |
| class TACOConfig(datasets.BuilderConfig): | |
| """BuilderConfig for the TACO dataset.""" | |
| def __init__(self, *args, difficulties=["ALL"], skills=["ALL"], **kwargs): | |
| """BuilderConfig for the APPS Code dataset. | |
| Args: | |
| difficulties (:obj:`List[str]`): List of problem difficulty levels to load. | |
| skills (:obj:`List[str]`): List of algorithm skills of problems to load. | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| if "ALL" in difficulties: | |
| assert len(difficulties) == 1 | |
| self.filter_difficulties = False | |
| else: | |
| self.filter_difficulties = True | |
| if "ALL" in skills: | |
| assert len(skills) == 1 | |
| self.filter_skills = False | |
| else: | |
| self.filter_skills = True | |
| if self.filter_difficulties: | |
| subset_name = '+'.join(sorted(difficulties)) | |
| assert not self.filter_skills, "Not supported to filter difficulties and skills together." | |
| elif self.filter_skills: | |
| subset_name = '+'.join(sorted(skills)) | |
| else: | |
| subset_name = 'ALL' | |
| super().__init__( | |
| *args, | |
| name=subset_name, | |
| **kwargs, | |
| ) | |
| self.subsets = {"difficulties": difficulties, "skills": skills} | |
| class TACO(datasets.GeneratorBasedBuilder): | |
| """TACO dataset.""" | |
| VERSION = datasets.Version("1.0.0") | |
| BUILDER_CONFIG_CLASS = TACOConfig | |
| BUILDER_CONFIGS = [ | |
| TACOConfig(difficulties=[level]) for level in _DIFFICULTY_CONFIGS | |
| ] + [ | |
| TACOConfig(skills=[skill]) for skill in _SKILL_CONFIGS if skill!='ALL' | |
| ] | |
| DEFAULT_CONFIG_NAME = "ALL" | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features({ | |
| 'question': datasets.Value(dtype='string', id=None), | |
| 'solutions': datasets.Value(dtype='string', id=None), | |
| 'starter_code': datasets.Value(dtype='string', id=None), | |
| 'input_output': datasets.Value(dtype='string', id=None), | |
| 'difficulty': datasets.Value(dtype='string', id=None), | |
| 'raw_tags': datasets.Value(dtype='string', id=None), | |
| 'name': datasets.Value(dtype='string', id=None), | |
| 'source': datasets.Value(dtype='string', id=None), | |
| 'tags': datasets.Value(dtype='string', id=None), | |
| 'skill_types': datasets.Value(dtype='string', id=None), | |
| 'url': datasets.Value(dtype='string', id=None), | |
| 'Expected Auxiliary Space': datasets.Value(dtype='string', id=None), | |
| 'time_limit': datasets.Value(dtype='string', id=None), | |
| 'date': datasets.Value(dtype='string', id=None), | |
| 'picture_num': datasets.Value(dtype='string', id=None), | |
| 'memory_limit': datasets.Value(dtype='string', id=None), | |
| 'Expected Time Complexity': datasets.Value(dtype='string', id=None), | |
| }), | |
| supervised_keys=None, | |
| citation=_CITATION, | |
| homepage=_HOMEPAGE, | |
| license="MIT License", | |
| ) | |
| def _split_generators(self, dl_manager): | |
| downloaded_files = dl_manager.download_and_extract(_URLS) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
| ] | |
| def _generate_examples(self, filepath): | |
| key = 0 | |
| dataset = datasets.concatenate_datasets([datasets.Dataset.from_file(file) for file in filepath]) | |
| for idx, data in enumerate(dataset): | |
| difficulty = data['difficulty'] | |
| skills = eval(data['skill_types']) | |
| if self.config.filter_difficulties and not difficulty in self.config.subsets['difficulties']: | |
| continue | |
| if self.config.filter_skills: | |
| valid_skills = self.config.subsets['skills'] | |
| if not bool(set(valid_skills) & set(skills)): | |
| continue | |
| yield key, data | |
| key += 1 |