Upload .huggingface/README.md with huggingface_hub
Browse files- .huggingface/README.md +98 -0
.huggingface/README.md
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: mit
|
| 5 |
+
annotations_creators:
|
| 6 |
+
- no-annotation
|
| 7 |
+
language_creators:
|
| 8 |
+
- found
|
| 9 |
+
pretty_name: Medium Articles Dataset
|
| 10 |
+
size_categories:
|
| 11 |
+
- n>1K
|
| 12 |
+
source_datasets:
|
| 13 |
+
- original
|
| 14 |
+
task_categories:
|
| 15 |
+
- text-classification
|
| 16 |
+
- text-generation
|
| 17 |
+
task_ids:
|
| 18 |
+
- topic-classification
|
| 19 |
+
- language-modeling
|
| 20 |
+
tags:
|
| 21 |
+
- medium
|
| 22 |
+
- articles
|
| 23 |
+
- blog-posts
|
| 24 |
+
dataset_info:
|
| 25 |
+
features:
|
| 26 |
+
- name: text
|
| 27 |
+
dtype: string
|
| 28 |
+
- name: title
|
| 29 |
+
dtype: string
|
| 30 |
+
- name: url
|
| 31 |
+
dtype: string
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
# Medium Articles Dataset
|
| 35 |
+
|
| 36 |
+
## Dataset Description
|
| 37 |
+
|
| 38 |
+
### Dataset Summary
|
| 39 |
+
|
| 40 |
+
This dataset is a comprehensive collection of Medium articles, combining and normalizing data from multiple sources on both Kaggle and Hugging Face. A key feature is that all entries in the `text` column are unique - there are no duplicate articles in the final dataset.
|
| 41 |
+
|
| 42 |
+
### Languages
|
| 43 |
+
|
| 44 |
+
The dataset primarily contains articles in English.
|
| 45 |
+
|
| 46 |
+
### Dataset Structure
|
| 47 |
+
|
| 48 |
+
The dataset is provided in Parquet format with unique entries in the text column.
|
| 49 |
+
|
| 50 |
+
### Data Fields
|
| 51 |
+
|
| 52 |
+
- `text`: The main content of the article (unique across the dataset)
|
| 53 |
+
- `title`: The title of the article (if available in source dataset)
|
| 54 |
+
- `url`: URL of the original article (if available in source dataset)
|
| 55 |
+
- Additional fields may vary based on source datasets
|
| 56 |
+
|
| 57 |
+
### Dataset Creation
|
| 58 |
+
|
| 59 |
+
This dataset was created by combining and normalizing multiple existing datasets from Kaggle and Hugging Face. The process includes:
|
| 60 |
+
1. Downloading source datasets
|
| 61 |
+
2. Normalizing data format
|
| 62 |
+
3. Removing duplicate articles based on text content
|
| 63 |
+
4. Handling missing values
|
| 64 |
+
5. Converting to Parquet format
|
| 65 |
+
|
| 66 |
+
### Source Data
|
| 67 |
+
|
| 68 |
+
#### Kaggle Sources:
|
| 69 |
+
- aiswaryaramachandran/medium-articles-with-content
|
| 70 |
+
- hsankesara/medium-articles
|
| 71 |
+
- meruvulikith/1300-towards-datascience-medium-articles-dataset
|
| 72 |
+
|
| 73 |
+
#### Hugging Face Sources:
|
| 74 |
+
- fabiochiu/medium-articles
|
| 75 |
+
- Falah/medium_articles_posts
|
| 76 |
+
|
| 77 |
+
### Licensing Information
|
| 78 |
+
|
| 79 |
+
This dataset is released under MIT License.
|
| 80 |
+
|
| 81 |
+
### Citation Information
|
| 82 |
+
|
| 83 |
+
If you use this dataset in your research, please cite:
|
| 84 |
+
|
| 85 |
+
```bibtex
|
| 86 |
+
@dataset{medium_articles_2025,
|
| 87 |
+
author = {Alaamer},
|
| 88 |
+
title = {Medium Articles Dataset},
|
| 89 |
+
year = {2025},
|
| 90 |
+
publisher = {Hugging Face},
|
| 91 |
+
journal = {Hugging Face Data Repository},
|
| 92 |
+
howpublished = {\url{https://huggingface.co/datasets/Alaamer/medium-articles-posts-with-content}}
|
| 93 |
+
}
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
### Contributions
|
| 97 |
+
|
| 98 |
+
Thanks to all the original dataset creators and contributors. Contributions are welcome via pull requests.
|