Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K - 100K
Tags:
emotion-classification
License:
Create emotion.py
Browse files- emotion.py +88 -0
emotion.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
|
| 3 |
+
import datasets
|
| 4 |
+
from datasets.tasks import TextClassification
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
_CITATION = """\
|
| 8 |
+
@inproceedings{saravia-etal-2018-carer,
|
| 9 |
+
title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
|
| 10 |
+
author = "Saravia, Elvis and
|
| 11 |
+
Liu, Hsien-Chi Toby and
|
| 12 |
+
Huang, Yen-Hao and
|
| 13 |
+
Wu, Junlin and
|
| 14 |
+
Chen, Yi-Shin",
|
| 15 |
+
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
|
| 16 |
+
month = oct # "-" # nov,
|
| 17 |
+
year = "2018",
|
| 18 |
+
address = "Brussels, Belgium",
|
| 19 |
+
publisher = "Association for Computational Linguistics",
|
| 20 |
+
url = "https://www.aclweb.org/anthology/D18-1404",
|
| 21 |
+
doi = "10.18653/v1/D18-1404",
|
| 22 |
+
pages = "3687--3697",
|
| 23 |
+
abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
|
| 24 |
+
}
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
_DESCRIPTION = """\
|
| 28 |
+
Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
_HOMEPAGE = "https://github.com/dair-ai/emotion_dataset"
|
| 32 |
+
|
| 33 |
+
_LICENSE = "The dataset should be used for educational and research purposes only"
|
| 34 |
+
|
| 35 |
+
_URLS = {
|
| 36 |
+
"split": {
|
| 37 |
+
"train": "data/train.jsonl.gz",
|
| 38 |
+
"validation": "data/validation.jsonl.gz",
|
| 39 |
+
"test": "data/test.jsonl.gz",
|
| 40 |
+
},
|
| 41 |
+
"unsplit": {
|
| 42 |
+
"train": "data/data.jsonl.gz",
|
| 43 |
+
},
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class Emotion(datasets.GeneratorBasedBuilder):
|
| 48 |
+
VERSION = datasets.Version("1.0.0")
|
| 49 |
+
BUILDER_CONFIGS = [
|
| 50 |
+
datasets.BuilderConfig(
|
| 51 |
+
name="split", version=VERSION, description="Dataset split in train, validation and test"
|
| 52 |
+
),
|
| 53 |
+
datasets.BuilderConfig(name="unsplit", version=VERSION, description="Unsplit dataset"),
|
| 54 |
+
]
|
| 55 |
+
DEFAULT_CONFIG_NAME = "split"
|
| 56 |
+
|
| 57 |
+
def _info(self):
|
| 58 |
+
class_names = ["sadness", "joy", "love", "anger", "fear", "surprise"]
|
| 59 |
+
return datasets.DatasetInfo(
|
| 60 |
+
description=_DESCRIPTION,
|
| 61 |
+
features=datasets.Features(
|
| 62 |
+
{"text": datasets.Value("string"), "label": datasets.ClassLabel(names=class_names)}
|
| 63 |
+
),
|
| 64 |
+
supervised_keys=("text", "label"),
|
| 65 |
+
homepage=_HOMEPAGE,
|
| 66 |
+
citation=_CITATION,
|
| 67 |
+
license=_LICENSE,
|
| 68 |
+
task_templates=[TextClassification(text_column="text", label_column="label")],
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
def _split_generators(self, dl_manager):
|
| 72 |
+
"""Returns SplitGenerators."""
|
| 73 |
+
paths = dl_manager.download_and_extract(_URLS[self.config.name])
|
| 74 |
+
if self.config.name == "split":
|
| 75 |
+
return [
|
| 76 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]}),
|
| 77 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": paths["validation"]}),
|
| 78 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": paths["test"]}),
|
| 79 |
+
]
|
| 80 |
+
else:
|
| 81 |
+
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]})]
|
| 82 |
+
|
| 83 |
+
def _generate_examples(self, filepath):
|
| 84 |
+
"""Generate examples."""
|
| 85 |
+
with open(filepath, encoding="utf-8") as f:
|
| 86 |
+
for idx, line in enumerate(f):
|
| 87 |
+
example = json.loads(line)
|
| 88 |
+
yield idx, example
|