File size: 6,242 Bytes
27c13fe
61109a1
d6d5c79
61109a1
d6d5c79
 
 
 
 
 
61109a1
d6d5c79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61109a1
 
d6d5c79
 
 
 
 
 
 
 
 
 
 
 
 
 
61109a1
d6d5c79
 
 
 
 
 
 
 
 
 
 
 
61109a1
 
27c13fe
61109a1
 
 
 
 
 
 
 
 
 
 
 
 
78cadc0
61109a1
 
 
 
 
 
 
 
27c13fe
61109a1
27c13fe
61109a1
27c13fe
61109a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e22f81
 
 
 
61109a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e22f81
 
 
 
 
 
 
 
 
 
 
 
 
 
61109a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd3b8c9
61109a1
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
dataset_info:
- config_name: all
  features:
  - name: image
    dtype: image
  - name: depth
    dtype: image
  - name: mask
    dtype: image
  splits:
  - name: train
    num_bytes: 22712394633.0
    num_examples: 12000
  download_size: 22677841215
  dataset_size: 22712394633.0
- config_name: blender
  features:
  - name: image
    dtype: image
  - name: depth
    dtype: image
  - name: mask
    dtype: image
  splits:
  - name: train
    num_bytes: 11049913446.0
    num_examples: 6000
  download_size: 11050639109
  dataset_size: 11049913446.0
- config_name: default
  features:
  - name: image
    dtype: image
  - name: depth
    dtype: image
  - name: mask
    dtype: image
  splits:
  - name: train
    num_examples: 12000
  download_size: 21573770746
  dataset_size: 21702540415
- config_name: sdxl
  features:
  - name: image
    dtype: image
  - name: depth
    dtype: image
  - name: mask
    dtype: image
  splits:
  - name: train
    num_bytes: 11662481187.0
    num_examples: 6000
  download_size: 11626921894
  dataset_size: 11662481187.0
configs:
- config_name: all
  data_files:
  - split: train
    path: all/train-*
- config_name: blender
  data_files:
  - split: train
    path: blender/train-*
- config_name: sdxl
  data_files:
  - split: train
    path: sdxl/train-*
language:
- en
license: gpl-3.0
tags:
- vision
- image segmentation
- instance segmentation
- object detection
- synthetic
- sim-to-real
- depth estimation
- image to image
annotations_creators:
- machine-generated
pretty_name: SynWBM Dataset
size_categories:
- 10K<n<100K
task_categories:
- object-detection
- image-segmentation
- depth-estimation
- image-to-image
task_ids:
- instance-segmentation
- semantic-segmentation
---
# The SynWBM (Synthetic White Button Mushrooms) Dataset!

![Sample example](https://huggingface.co/datasets/ABC-iRobotics/SynWBM/resolve/main/example.png "Sample example")

Synthetic dataset of white button mushrooms (Agaricus bisporus) with instance segmentation masks and depth maps.

### Dataset Summary

The SynWBM Dataset is a collection of synthetic images of white button mushroom. The dataset incorporates rendered (using Blender) and generated (using Stable Diffusion XL) synthetic images for training mushroom segmentation models. Each image is annotated with instance segmentation masks and depth maps. The dataset explicitly marks synthetic samples based on their creation method (either rendered from the Blender scene or generated using Stable Diffusion XL) to facilitate sim-to-real performance tests on different synthetic datasets. The dataset does not provide real-world samples for testing, it only contains the synthetic training data.

### Supported Tasks and Leaderboards

The dataset supports tasks such as semantic segmentation, instance segmentation, object detection, depth estimation, image-to-image, and pre-training models for sim-to-real transfer.

## Dataset Structure

### Data samples

The samples of the dataset are 1024x1024x3 images in PNG format. The annotations are 1024x1024x1 PNG images representing the instance segmentation masks (using uint16 data format) and 1024x1024x1 PNG images representing depth data.

### Data Fields

The data fields are:

1) 'image': 1024x1024x3 PNG image
2) 'depth': 1024x1024x1 PNG image
3) 'mask': 1024x1024x1 unit16 PNG image

⚠️ Note: Instance masks are stored as uint16 PNG images, where each pixel value corresponds to an instance ID. Many default image viewers will render them as black; for visualization, we recommend converting them to RGB with a color palette.

### Data Splits

The dataset contains only a training split for all image collections, but provides three configs (`all`, `blender` and `sdxl`) to load the images generated by different methods.

### Limitations

- The dataset only contains synthetic images; no real-world samples are provided.  
- Stable Diffusion XL generations may contain artifacts or unrealistic structures.  
- Depth annotations are derived from rendering/generation pipelines and may not reflect real-world sensor noise.

## Usage

You can load the dataset using 🤗 Datasets.

⚠️ **Note**: By default, `load_dataset` will download the *entire* dataset locally.  
If you only want to iterate over the data without downloading everything first, use the `streaming=True` argument (see example below).

```python
from datasets import load_dataset

# Load all synthetic images
ds = load_dataset("ABC-iRobotics/SynWBM", name="all")

# Load only Blender-rendered images
ds_blender = load_dataset("ABC-iRobotics/SynWBM", name="blender")

# Load only SDXL-generated images
ds_sdxl = load_dataset("ABC-iRobotics/SynWBM", name="sdxl")

# Example visualization
example = ds["train"][0]
image, mask, depth = example["image"], example["mask"], example["depth"]
```

**Streaming mode (recommended for large datasets):**

```python
from datasets import load_dataset

# Load in streaming mode: data is streamed on the fly without full download
ds_stream = load_dataset("ABC-iRobotics/SynWBM", name="all", streaming=True)

# Iterate through samples
for example in ds_stream["train"]:
    image, mask, depth = example["image"], example["mask"], example["depth"]
    # process the example...
```

### Intended Use

The dataset is intended for research in:
- instance segmentation of mushrooms
- sim-to-real transfer learning
- synthetic-to-real domain adaptation
- benchmarking data generation pipelines

## Dataset Creation

### Curation Rationale

The dataset was created to train instance segmentation models on synthetic data for mushroom instance segmentation in real-world images.

### Source Data

The data is generated using two methods:

- Blender-rendered images are produced from a fully procedural Blender scene, with annotations generated using the [Blender Annotation Tool (BAT)](https://github.com/ABC-iRobotics/blender_annotation_tool)
- Stable Diffusion XL images are generated using ComfyUI with a [custom workflow](https://huggingface.co/datasets/ABC-iRobotics/SynWBM/blob/main/mushroom_worflow.json) provided in this repository.

## Citation Information

Coming Soon

## License
This dataset is released under [GNU General Public License v3.0](https://www.gnu.org/licenses/gpl-3.0.en.html).