Create gen_script.py
Browse files- gen_script.py +93 -0
gen_script.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import cached_property
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import datasets
|
| 5 |
+
|
| 6 |
+
_VERSION = "0.1.0"
|
| 7 |
+
|
| 8 |
+
_CITATION = """
|
| 9 |
+
@inproceedings{5539970,
|
| 10 |
+
title = {SUN database: Large-scale scene recognition from abbey to zoo},
|
| 11 |
+
author = {Xiao, Jianxiong and Hays, James and Ehinger, Krista A. and Oliva, Aude and Torralba, Antonio},
|
| 12 |
+
year = 2010,
|
| 13 |
+
booktitle = {2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition},
|
| 14 |
+
volume = {},
|
| 15 |
+
number = {},
|
| 16 |
+
pages = {3485--3492},
|
| 17 |
+
doi = {10.1109/CVPR.2010.5539970},
|
| 18 |
+
keywords = {Sun;Large-scale systems;Layout;Humans;Image databases;Computer vision;Anthropometry;Bridges;Legged locomotion;Spatial databases}
|
| 19 |
+
}
|
| 20 |
+
@article{Xiao2014SUNDE,
|
| 21 |
+
title = {SUN Database: Exploring a Large Collection of Scene Categories},
|
| 22 |
+
author = {Jianxiong Xiao and Krista A. Ehinger and James Hays and Antonio Torralba and Aude Oliva},
|
| 23 |
+
year = 2014,
|
| 24 |
+
journal = {International Journal of Computer Vision},
|
| 25 |
+
volume = 119,
|
| 26 |
+
pages = {3--22},
|
| 27 |
+
url = {https://api.semanticscholar.org/CorpusID:10224573}
|
| 28 |
+
}
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
_DESCRIPTION = """
|
| 32 |
+
Scene categorization is a fundamental problem in computer vision.
|
| 33 |
+
However, scene understanding research has been constrained by the limited scope of currently-used databases which do not capture the full variety of scene categories.
|
| 34 |
+
Whereas standard databases for object categorization contain hundreds of different classes of objects, the largest available dataset of scene categories contains only 15 classes.
|
| 35 |
+
In this paper we propose the extensive Scene UNderstanding (SUN) database that contains 899 categories and 130,519 images.
|
| 36 |
+
We use 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition and establish new bounds of performance.
|
| 37 |
+
We measure human scene classification performance on the SUN database and compare this with computational methods.
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
_HOMEPAGE = "https://vision.princeton.edu/projects/2010/SUN/"
|
| 41 |
+
|
| 42 |
+
_LICENSE = ""
|
| 43 |
+
|
| 44 |
+
_URL = "http://vision.princeton.edu/projects/2010/SUN/SUN397.tar.gz"
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class SUN397(datasets.GeneratorBasedBuilder):
|
| 48 |
+
DEFAULT_WRITER_BATCH_SIZE = 1000
|
| 49 |
+
|
| 50 |
+
@cached_property
|
| 51 |
+
def archive_path(self):
|
| 52 |
+
dl_manager = datasets.DownloadManager()
|
| 53 |
+
return Path(dl_manager.download_and_extract(_URL)) / "SUN397"
|
| 54 |
+
|
| 55 |
+
@property
|
| 56 |
+
def features(self):
|
| 57 |
+
return datasets.Features(
|
| 58 |
+
{
|
| 59 |
+
"image": datasets.Image(mode="RGB"),
|
| 60 |
+
"label": datasets.ClassLabel(names_file=self.archive_path / "ClassName.txt"),
|
| 61 |
+
}
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
def _info(self):
|
| 65 |
+
return datasets.DatasetInfo(
|
| 66 |
+
features=self.features,
|
| 67 |
+
supervised_keys=None,
|
| 68 |
+
description=_DESCRIPTION,
|
| 69 |
+
homepage=_HOMEPAGE,
|
| 70 |
+
license=_LICENSE,
|
| 71 |
+
version=_VERSION,
|
| 72 |
+
citation=_CITATION,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
| 76 |
+
images = sorted(list(self.archive_path.rglob("*.jpg")))
|
| 77 |
+
|
| 78 |
+
return [
|
| 79 |
+
datasets.SplitGenerator(
|
| 80 |
+
name=datasets.Split.TRAIN,
|
| 81 |
+
gen_kwargs={"images": images},
|
| 82 |
+
),
|
| 83 |
+
]
|
| 84 |
+
|
| 85 |
+
def _generate_examples(self, images: list[Path]):
|
| 86 |
+
for i, image in enumerate(images):
|
| 87 |
+
yield (
|
| 88 |
+
i,
|
| 89 |
+
{
|
| 90 |
+
"image": str(image),
|
| 91 |
+
"label": f"/{image.relative_to(self.archive_path).parent}",
|
| 92 |
+
},
|
| 93 |
+
)
|