Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +1013 -0
- config_sentence_transformers.json +10 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,1013 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:1021596
|
| 8 |
+
- loss:MultipleNegativesRankingLoss
|
| 9 |
+
base_model: codersan/FaMiniLM
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 'بیشتر زنان دلیل این کار را درک نمیکنند '
|
| 12 |
+
sentences:
|
| 13 |
+
- Most women can't understand why this happens.
|
| 14 |
+
- feeling with confusion and annoyance that what he could decide easily and clearly
|
| 15 |
+
by himself, he could not discuss before Princess Tverskaya, who to him stood for
|
| 16 |
+
the incarnation of that brute force which would inevitably control him in the
|
| 17 |
+
life he led in the eyes of the world, and hinder him from giving way to his feeling
|
| 18 |
+
of love and forgiveness.
|
| 19 |
+
- 'MR TALLBOYS: Happy days, happy days!'
|
| 20 |
+
- source_sentence: به ادارات دولتی و اداره پست و سپس نزد استاندار رفت.
|
| 21 |
+
sentences:
|
| 22 |
+
- It strengthens the disease
|
| 23 |
+
- to government offices, to the post office, and to the Governor's.
|
| 24 |
+
- but she was utterly beside herself, and moved hanging on her husband's arm as
|
| 25 |
+
though in a dream.
|
| 26 |
+
- source_sentence: در همین آن صدائی به گوشش رسید که بدون شک صدای بسته شدن پنجره خانه
|
| 27 |
+
خانم سمپریل بود!
|
| 28 |
+
sentences:
|
| 29 |
+
- Even as she did so a sound checked her for an instant ' the unmistakable bang
|
| 30 |
+
of a window shutting, somewhere in Mrs Semprill's house.
|
| 31 |
+
- That was over the line.
|
| 32 |
+
- No one would be better able than she to shape the virtuous man who would restore
|
| 33 |
+
the prestige of the family
|
| 34 |
+
- source_sentence: معنی آن مهر این است که 3 خدا، امروز به دست من انجام شد.
|
| 35 |
+
sentences:
|
| 36 |
+
- 'It signifies God: done this day by my hand.'
|
| 37 |
+
- They all embraced one another
|
| 38 |
+
- that's the mark of a Dark wizard.
|
| 39 |
+
- source_sentence: اگر این کار مداومت مییافت، سنگر قادر به مقاومت نمیبود.
|
| 40 |
+
sentences:
|
| 41 |
+
- If this were continued, the barricade was no longer tenable.
|
| 42 |
+
- They rolled down on the ground.
|
| 43 |
+
- Well, for this moment she had a protector.
|
| 44 |
+
pipeline_tag: sentence-similarity
|
| 45 |
+
library_name: sentence-transformers
|
| 46 |
+
---
|
| 47 |
+
|
| 48 |
+
# SentenceTransformer based on codersan/FaMiniLM
|
| 49 |
+
|
| 50 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [codersan/FaMiniLM](https://huggingface.co/codersan/FaMiniLM). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 51 |
+
|
| 52 |
+
## Model Details
|
| 53 |
+
|
| 54 |
+
### Model Description
|
| 55 |
+
- **Model Type:** Sentence Transformer
|
| 56 |
+
- **Base model:** [codersan/FaMiniLM](https://huggingface.co/codersan/FaMiniLM) <!-- at revision 22713fef958dd574a0171739cb8f8804c8650527 -->
|
| 57 |
+
- **Maximum Sequence Length:** 256 tokens
|
| 58 |
+
- **Output Dimensionality:** 384 dimensions
|
| 59 |
+
- **Similarity Function:** Cosine Similarity
|
| 60 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 61 |
+
<!-- - **Language:** Unknown -->
|
| 62 |
+
<!-- - **License:** Unknown -->
|
| 63 |
+
|
| 64 |
+
### Model Sources
|
| 65 |
+
|
| 66 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 67 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 68 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 69 |
+
|
| 70 |
+
### Full Model Architecture
|
| 71 |
+
|
| 72 |
+
```
|
| 73 |
+
SentenceTransformer(
|
| 74 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
| 75 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 76 |
+
(2): Normalize()
|
| 77 |
+
)
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
## Usage
|
| 81 |
+
|
| 82 |
+
### Direct Usage (Sentence Transformers)
|
| 83 |
+
|
| 84 |
+
First install the Sentence Transformers library:
|
| 85 |
+
|
| 86 |
+
```bash
|
| 87 |
+
pip install -U sentence-transformers
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
Then you can load this model and run inference.
|
| 91 |
+
```python
|
| 92 |
+
from sentence_transformers import SentenceTransformer
|
| 93 |
+
|
| 94 |
+
# Download from the 🤗 Hub
|
| 95 |
+
model = SentenceTransformer("codersan/FaMiniLm_Mizan3")
|
| 96 |
+
# Run inference
|
| 97 |
+
sentences = [
|
| 98 |
+
'اگر این کار مداومت می\u200cیافت، سنگر قادر به مقاومت نمی\u200cبود.',
|
| 99 |
+
'If this were continued, the barricade was no longer tenable.',
|
| 100 |
+
'Well, for this moment she had a protector.',
|
| 101 |
+
]
|
| 102 |
+
embeddings = model.encode(sentences)
|
| 103 |
+
print(embeddings.shape)
|
| 104 |
+
# [3, 384]
|
| 105 |
+
|
| 106 |
+
# Get the similarity scores for the embeddings
|
| 107 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 108 |
+
print(similarities.shape)
|
| 109 |
+
# [3, 3]
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
<!--
|
| 113 |
+
### Direct Usage (Transformers)
|
| 114 |
+
|
| 115 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 116 |
+
|
| 117 |
+
</details>
|
| 118 |
+
-->
|
| 119 |
+
|
| 120 |
+
<!--
|
| 121 |
+
### Downstream Usage (Sentence Transformers)
|
| 122 |
+
|
| 123 |
+
You can finetune this model on your own dataset.
|
| 124 |
+
|
| 125 |
+
<details><summary>Click to expand</summary>
|
| 126 |
+
|
| 127 |
+
</details>
|
| 128 |
+
-->
|
| 129 |
+
|
| 130 |
+
<!--
|
| 131 |
+
### Out-of-Scope Use
|
| 132 |
+
|
| 133 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 134 |
+
-->
|
| 135 |
+
|
| 136 |
+
<!--
|
| 137 |
+
## Bias, Risks and Limitations
|
| 138 |
+
|
| 139 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 140 |
+
-->
|
| 141 |
+
|
| 142 |
+
<!--
|
| 143 |
+
### Recommendations
|
| 144 |
+
|
| 145 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 146 |
+
-->
|
| 147 |
+
|
| 148 |
+
## Training Details
|
| 149 |
+
|
| 150 |
+
### Training Dataset
|
| 151 |
+
|
| 152 |
+
#### Unnamed Dataset
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
* Size: 1,021,596 training samples
|
| 156 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 157 |
+
* Approximate statistics based on the first 1000 samples:
|
| 158 |
+
| | anchor | positive |
|
| 159 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 160 |
+
| type | string | string |
|
| 161 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 46.68 tokens</li><li>max: 212 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 16.07 tokens</li><li>max: 81 tokens</li></ul> |
|
| 162 |
+
* Samples:
|
| 163 |
+
| anchor | positive |
|
| 164 |
+
|:--------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------|
|
| 165 |
+
| <code>دختران برای اطاعت امر پدر از جا برخاستند.</code> | <code>They arose to obey.</code> |
|
| 166 |
+
| <code>همه چیز را بم وقع خواهی دانست.</code> | <code>You'll know it all in time</code> |
|
| 167 |
+
| <code>او هر لحظه گرفتار یک وضع است، زارزار گریه میکند. میگوید به ما توهین کردهاند، حیثیتمان را لکهدار نمودند.</code> | <code>She is in hysterics up there, and moans and says that we have been 'shamed and disgraced.</code> |
|
| 168 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 169 |
+
```json
|
| 170 |
+
{
|
| 171 |
+
"scale": 20.0,
|
| 172 |
+
"similarity_fct": "cos_sim"
|
| 173 |
+
}
|
| 174 |
+
```
|
| 175 |
+
|
| 176 |
+
### Training Hyperparameters
|
| 177 |
+
#### Non-Default Hyperparameters
|
| 178 |
+
|
| 179 |
+
- `eval_strategy`: steps
|
| 180 |
+
- `per_device_train_batch_size`: 16
|
| 181 |
+
- `learning_rate`: 2e-05
|
| 182 |
+
- `num_train_epochs`: 1
|
| 183 |
+
- `warmup_ratio`: 0.1
|
| 184 |
+
- `load_best_model_at_end`: True
|
| 185 |
+
- `push_to_hub`: True
|
| 186 |
+
- `hub_model_id`: codersan/FaMiniLm_Mizan3
|
| 187 |
+
- `eval_on_start`: True
|
| 188 |
+
- `batch_sampler`: no_duplicates
|
| 189 |
+
|
| 190 |
+
#### All Hyperparameters
|
| 191 |
+
<details><summary>Click to expand</summary>
|
| 192 |
+
|
| 193 |
+
- `overwrite_output_dir`: False
|
| 194 |
+
- `do_predict`: False
|
| 195 |
+
- `eval_strategy`: steps
|
| 196 |
+
- `prediction_loss_only`: True
|
| 197 |
+
- `per_device_train_batch_size`: 16
|
| 198 |
+
- `per_device_eval_batch_size`: 8
|
| 199 |
+
- `per_gpu_train_batch_size`: None
|
| 200 |
+
- `per_gpu_eval_batch_size`: None
|
| 201 |
+
- `gradient_accumulation_steps`: 1
|
| 202 |
+
- `eval_accumulation_steps`: None
|
| 203 |
+
- `torch_empty_cache_steps`: None
|
| 204 |
+
- `learning_rate`: 2e-05
|
| 205 |
+
- `weight_decay`: 0
|
| 206 |
+
- `adam_beta1`: 0.9
|
| 207 |
+
- `adam_beta2`: 0.999
|
| 208 |
+
- `adam_epsilon`: 1e-08
|
| 209 |
+
- `max_grad_norm`: 1
|
| 210 |
+
- `num_train_epochs`: 1
|
| 211 |
+
- `max_steps`: -1
|
| 212 |
+
- `lr_scheduler_type`: linear
|
| 213 |
+
- `lr_scheduler_kwargs`: {}
|
| 214 |
+
- `warmup_ratio`: 0.1
|
| 215 |
+
- `warmup_steps`: 0
|
| 216 |
+
- `log_level`: passive
|
| 217 |
+
- `log_level_replica`: warning
|
| 218 |
+
- `log_on_each_node`: True
|
| 219 |
+
- `logging_nan_inf_filter`: True
|
| 220 |
+
- `save_safetensors`: True
|
| 221 |
+
- `save_on_each_node`: False
|
| 222 |
+
- `save_only_model`: False
|
| 223 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 224 |
+
- `no_cuda`: False
|
| 225 |
+
- `use_cpu`: False
|
| 226 |
+
- `use_mps_device`: False
|
| 227 |
+
- `seed`: 42
|
| 228 |
+
- `data_seed`: None
|
| 229 |
+
- `jit_mode_eval`: False
|
| 230 |
+
- `use_ipex`: False
|
| 231 |
+
- `bf16`: False
|
| 232 |
+
- `fp16`: False
|
| 233 |
+
- `fp16_opt_level`: O1
|
| 234 |
+
- `half_precision_backend`: auto
|
| 235 |
+
- `bf16_full_eval`: False
|
| 236 |
+
- `fp16_full_eval`: False
|
| 237 |
+
- `tf32`: None
|
| 238 |
+
- `local_rank`: 0
|
| 239 |
+
- `ddp_backend`: None
|
| 240 |
+
- `tpu_num_cores`: None
|
| 241 |
+
- `tpu_metrics_debug`: False
|
| 242 |
+
- `debug`: []
|
| 243 |
+
- `dataloader_drop_last`: False
|
| 244 |
+
- `dataloader_num_workers`: 0
|
| 245 |
+
- `dataloader_prefetch_factor`: None
|
| 246 |
+
- `past_index`: -1
|
| 247 |
+
- `disable_tqdm`: False
|
| 248 |
+
- `remove_unused_columns`: True
|
| 249 |
+
- `label_names`: None
|
| 250 |
+
- `load_best_model_at_end`: True
|
| 251 |
+
- `ignore_data_skip`: False
|
| 252 |
+
- `fsdp`: []
|
| 253 |
+
- `fsdp_min_num_params`: 0
|
| 254 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 255 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 256 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 257 |
+
- `deepspeed`: None
|
| 258 |
+
- `label_smoothing_factor`: 0.0
|
| 259 |
+
- `optim`: adamw_torch
|
| 260 |
+
- `optim_args`: None
|
| 261 |
+
- `adafactor`: False
|
| 262 |
+
- `group_by_length`: False
|
| 263 |
+
- `length_column_name`: length
|
| 264 |
+
- `ddp_find_unused_parameters`: None
|
| 265 |
+
- `ddp_bucket_cap_mb`: None
|
| 266 |
+
- `ddp_broadcast_buffers`: False
|
| 267 |
+
- `dataloader_pin_memory`: True
|
| 268 |
+
- `dataloader_persistent_workers`: False
|
| 269 |
+
- `skip_memory_metrics`: True
|
| 270 |
+
- `use_legacy_prediction_loop`: False
|
| 271 |
+
- `push_to_hub`: True
|
| 272 |
+
- `resume_from_checkpoint`: None
|
| 273 |
+
- `hub_model_id`: codersan/FaMiniLm_Mizan3
|
| 274 |
+
- `hub_strategy`: every_save
|
| 275 |
+
- `hub_private_repo`: None
|
| 276 |
+
- `hub_always_push`: False
|
| 277 |
+
- `gradient_checkpointing`: False
|
| 278 |
+
- `gradient_checkpointing_kwargs`: None
|
| 279 |
+
- `include_inputs_for_metrics`: False
|
| 280 |
+
- `include_for_metrics`: []
|
| 281 |
+
- `eval_do_concat_batches`: True
|
| 282 |
+
- `fp16_backend`: auto
|
| 283 |
+
- `push_to_hub_model_id`: None
|
| 284 |
+
- `push_to_hub_organization`: None
|
| 285 |
+
- `mp_parameters`:
|
| 286 |
+
- `auto_find_batch_size`: False
|
| 287 |
+
- `full_determinism`: False
|
| 288 |
+
- `torchdynamo`: None
|
| 289 |
+
- `ray_scope`: last
|
| 290 |
+
- `ddp_timeout`: 1800
|
| 291 |
+
- `torch_compile`: False
|
| 292 |
+
- `torch_compile_backend`: None
|
| 293 |
+
- `torch_compile_mode`: None
|
| 294 |
+
- `dispatch_batches`: None
|
| 295 |
+
- `split_batches`: None
|
| 296 |
+
- `include_tokens_per_second`: False
|
| 297 |
+
- `include_num_input_tokens_seen`: False
|
| 298 |
+
- `neftune_noise_alpha`: None
|
| 299 |
+
- `optim_target_modules`: None
|
| 300 |
+
- `batch_eval_metrics`: False
|
| 301 |
+
- `eval_on_start`: True
|
| 302 |
+
- `use_liger_kernel`: False
|
| 303 |
+
- `eval_use_gather_object`: False
|
| 304 |
+
- `average_tokens_across_devices`: False
|
| 305 |
+
- `prompts`: None
|
| 306 |
+
- `batch_sampler`: no_duplicates
|
| 307 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 308 |
+
|
| 309 |
+
</details>
|
| 310 |
+
|
| 311 |
+
### Training Logs
|
| 312 |
+
<details><summary>Click to expand</summary>
|
| 313 |
+
|
| 314 |
+
| Epoch | Step | Training Loss |
|
| 315 |
+
|:----------:|:-------:|:-------------:|
|
| 316 |
+
| 0 | 0 | - |
|
| 317 |
+
| 0.0016 | 100 | 3.1518 |
|
| 318 |
+
| 0.0031 | 200 | 3.1015 |
|
| 319 |
+
| 0.0047 | 300 | 2.9207 |
|
| 320 |
+
| **0.0063** | **400** | **2.8322** |
|
| 321 |
+
| 0.0078 | 500 | 2.7199 |
|
| 322 |
+
| 0.0094 | 600 | 2.6413 |
|
| 323 |
+
| 0.0110 | 700 | 2.4895 |
|
| 324 |
+
| 0.0125 | 800 | 2.4221 |
|
| 325 |
+
| 0.0141 | 900 | 2.2712 |
|
| 326 |
+
| 0.0157 | 1000 | 2.1497 |
|
| 327 |
+
| 0.0172 | 1100 | 2.0346 |
|
| 328 |
+
| 0.0188 | 1200 | 1.9132 |
|
| 329 |
+
| 0.0204 | 1300 | 1.848 |
|
| 330 |
+
| 0.0219 | 1400 | 1.7412 |
|
| 331 |
+
| 0.0235 | 1500 | 1.6231 |
|
| 332 |
+
| 0.0251 | 1600 | 1.5678 |
|
| 333 |
+
| 0.0266 | 1700 | 1.4954 |
|
| 334 |
+
| 0.0282 | 1800 | 1.4429 |
|
| 335 |
+
| 0.0298 | 1900 | 1.4179 |
|
| 336 |
+
| 0.0313 | 2000 | 1.3837 |
|
| 337 |
+
| 0.0329 | 2100 | 1.3612 |
|
| 338 |
+
| 0.0345 | 2200 | 1.3025 |
|
| 339 |
+
| 0.0360 | 2300 | 1.2768 |
|
| 340 |
+
| 0.0376 | 2400 | 1.2126 |
|
| 341 |
+
| 0.0392 | 2500 | 1.1951 |
|
| 342 |
+
| 0.0407 | 2600 | 1.1558 |
|
| 343 |
+
| 0.0423 | 2700 | 1.1002 |
|
| 344 |
+
| 0.0439 | 2800 | 1.1269 |
|
| 345 |
+
| 0.0454 | 2900 | 1.0932 |
|
| 346 |
+
| 0.0470 | 3000 | 1.0697 |
|
| 347 |
+
| 0.0486 | 3100 | 1.0455 |
|
| 348 |
+
| 0.0501 | 3200 | 1.0405 |
|
| 349 |
+
| 0.0517 | 3300 | 0.9895 |
|
| 350 |
+
| 0.0532 | 3400 | 0.9983 |
|
| 351 |
+
| 0.0548 | 3500 | 0.9381 |
|
| 352 |
+
| 0.0564 | 3600 | 0.9618 |
|
| 353 |
+
| 0.0579 | 3700 | 0.9799 |
|
| 354 |
+
| 0.0595 | 3800 | 0.8866 |
|
| 355 |
+
| 0.0611 | 3900 | 0.9085 |
|
| 356 |
+
| 0.0626 | 4000 | 0.9123 |
|
| 357 |
+
| 0.0642 | 4100 | 0.9017 |
|
| 358 |
+
| 0.0658 | 4200 | 0.8789 |
|
| 359 |
+
| 0.0673 | 4300 | 0.8164 |
|
| 360 |
+
| 0.0689 | 4400 | 0.8131 |
|
| 361 |
+
| 0.0705 | 4500 | 0.7834 |
|
| 362 |
+
| 0.0720 | 4600 | 0.7814 |
|
| 363 |
+
| 0.0736 | 4700 | 0.7927 |
|
| 364 |
+
| 0.0752 | 4800 | 0.8416 |
|
| 365 |
+
| 0.0767 | 4900 | 0.73 |
|
| 366 |
+
| 0.0783 | 5000 | 0.753 |
|
| 367 |
+
| 0.0799 | 5100 | 0.7397 |
|
| 368 |
+
| 0.0814 | 5200 | 0.7242 |
|
| 369 |
+
| 0.0830 | 5300 | 0.734 |
|
| 370 |
+
| 0.0846 | 5400 | 0.7379 |
|
| 371 |
+
| 0.0861 | 5500 | 0.7255 |
|
| 372 |
+
| 0.0877 | 5600 | 0.7621 |
|
| 373 |
+
| 0.0893 | 5700 | 0.6825 |
|
| 374 |
+
| 0.0908 | 5800 | 0.7056 |
|
| 375 |
+
| 0.0924 | 5900 | 0.6877 |
|
| 376 |
+
| 0.0940 | 6000 | 0.6865 |
|
| 377 |
+
| 0.0955 | 6100 | 0.6652 |
|
| 378 |
+
| 0.0971 | 6200 | 0.6445 |
|
| 379 |
+
| 0.0987 | 6300 | 0.6548 |
|
| 380 |
+
| 0.1002 | 6400 | 0.6556 |
|
| 381 |
+
| 0.1018 | 6500 | 0.6544 |
|
| 382 |
+
| 0.1034 | 6600 | 0.6496 |
|
| 383 |
+
| 0.1049 | 6700 | 0.6158 |
|
| 384 |
+
| 0.1065 | 6800 | 0.6693 |
|
| 385 |
+
| 0.1081 | 6900 | 0.6179 |
|
| 386 |
+
| 0.1096 | 7000 | 0.5527 |
|
| 387 |
+
| 0.1112 | 7100 | 0.596 |
|
| 388 |
+
| 0.1128 | 7200 | 0.5625 |
|
| 389 |
+
| 0.1143 | 7300 | 0.592 |
|
| 390 |
+
| 0.1159 | 7400 | 0.6063 |
|
| 391 |
+
| 0.1175 | 7500 | 0.5163 |
|
| 392 |
+
| 0.1190 | 7600 | 0.5472 |
|
| 393 |
+
| 0.1206 | 7700 | 0.5849 |
|
| 394 |
+
| 0.1222 | 7800 | 0.5948 |
|
| 395 |
+
| 0.1237 | 7900 | 0.5245 |
|
| 396 |
+
| 0.1253 | 8000 | 0.5561 |
|
| 397 |
+
| 0.1269 | 8100 | 0.5175 |
|
| 398 |
+
| 0.1284 | 8200 | 0.4929 |
|
| 399 |
+
| 0.1300 | 8300 | 0.5158 |
|
| 400 |
+
| 0.1316 | 8400 | 0.5429 |
|
| 401 |
+
| 0.1331 | 8500 | 0.5324 |
|
| 402 |
+
| 0.1347 | 8600 | 0.511 |
|
| 403 |
+
| 0.1363 | 8700 | 0.5242 |
|
| 404 |
+
| 0.1378 | 8800 | 0.5202 |
|
| 405 |
+
| 0.1394 | 8900 | 0.4967 |
|
| 406 |
+
| 0.1410 | 9000 | 0.5466 |
|
| 407 |
+
| 0.1425 | 9100 | 0.4865 |
|
| 408 |
+
| 0.1441 | 9200 | 0.5172 |
|
| 409 |
+
| 0.1457 | 9300 | 0.51 |
|
| 410 |
+
| 0.1472 | 9400 | 0.5204 |
|
| 411 |
+
| 0.1488 | 9500 | 0.4851 |
|
| 412 |
+
| 0.1504 | 9600 | 0.4726 |
|
| 413 |
+
| 0.1519 | 9700 | 0.4608 |
|
| 414 |
+
| 0.1535 | 9800 | 0.453 |
|
| 415 |
+
| 0.1551 | 9900 | 0.4539 |
|
| 416 |
+
| 0.1566 | 10000 | 0.442 |
|
| 417 |
+
| 0.1582 | 10100 | 0.4632 |
|
| 418 |
+
| 0.1597 | 10200 | 0.4024 |
|
| 419 |
+
| 0.1613 | 10300 | 0.4516 |
|
| 420 |
+
| 0.1629 | 10400 | 0.4551 |
|
| 421 |
+
| 0.1644 | 10500 | 0.4598 |
|
| 422 |
+
| 0.1660 | 10600 | 0.4791 |
|
| 423 |
+
| 0.1676 | 10700 | 0.4295 |
|
| 424 |
+
| 0.1691 | 10800 | 0.4552 |
|
| 425 |
+
| 0.1707 | 10900 | 0.4548 |
|
| 426 |
+
| 0.1723 | 11000 | 0.4795 |
|
| 427 |
+
| 0.1738 | 11100 | 0.4694 |
|
| 428 |
+
| 0.1754 | 11200 | 0.4049 |
|
| 429 |
+
| 0.1770 | 11300 | 0.4473 |
|
| 430 |
+
| 0.1785 | 11400 | 0.4161 |
|
| 431 |
+
| 0.1801 | 11500 | 0.4106 |
|
| 432 |
+
| 0.1817 | 11600 | 0.4276 |
|
| 433 |
+
| 0.1832 | 11700 | 0.416 |
|
| 434 |
+
| 0.1848 | 11800 | 0.4184 |
|
| 435 |
+
| 0.1864 | 11900 | 0.4268 |
|
| 436 |
+
| 0.1879 | 12000 | 0.4169 |
|
| 437 |
+
| 0.1895 | 12100 | 0.4063 |
|
| 438 |
+
| 0.1911 | 12200 | 0.4257 |
|
| 439 |
+
| 0.1926 | 12300 | 0.4114 |
|
| 440 |
+
| 0.1942 | 12400 | 0.3921 |
|
| 441 |
+
| 0.1958 | 12500 | 0.4037 |
|
| 442 |
+
| 0.1973 | 12600 | 0.4642 |
|
| 443 |
+
| 0.1989 | 12700 | 0.3929 |
|
| 444 |
+
| 0.2005 | 12800 | 0.4059 |
|
| 445 |
+
| 0.2020 | 12900 | 0.4132 |
|
| 446 |
+
| 0.2036 | 13000 | 0.4101 |
|
| 447 |
+
| 0.2052 | 13100 | 0.4122 |
|
| 448 |
+
| 0.2067 | 13200 | 0.3954 |
|
| 449 |
+
| 0.2083 | 13300 | 0.3671 |
|
| 450 |
+
| 0.2099 | 13400 | 0.4257 |
|
| 451 |
+
| 0.2114 | 13500 | 0.3719 |
|
| 452 |
+
| 0.2130 | 13600 | 0.3603 |
|
| 453 |
+
| 0.2146 | 13700 | 0.3465 |
|
| 454 |
+
| 0.2161 | 13800 | 0.3726 |
|
| 455 |
+
| 0.2177 | 13900 | 0.4021 |
|
| 456 |
+
| 0.2193 | 14000 | 0.3706 |
|
| 457 |
+
| 0.2208 | 14100 | 0.3471 |
|
| 458 |
+
| 0.2224 | 14200 | 0.3848 |
|
| 459 |
+
| 0.2240 | 14300 | 0.3967 |
|
| 460 |
+
| 0.2255 | 14400 | 0.3985 |
|
| 461 |
+
| 0.2271 | 14500 | 0.3457 |
|
| 462 |
+
| 0.2287 | 14600 | 0.3438 |
|
| 463 |
+
| 0.2302 | 14700 | 0.3333 |
|
| 464 |
+
| 0.2318 | 14800 | 0.3525 |
|
| 465 |
+
| 0.2334 | 14900 | 0.3948 |
|
| 466 |
+
| 0.2349 | 15000 | 0.3657 |
|
| 467 |
+
| 0.2365 | 15100 | 0.3437 |
|
| 468 |
+
| 0.2381 | 15200 | 0.361 |
|
| 469 |
+
| 0.2396 | 15300 | 0.356 |
|
| 470 |
+
| 0.2412 | 15400 | 0.3572 |
|
| 471 |
+
| 0.2428 | 15500 | 0.3464 |
|
| 472 |
+
| 0.2443 | 15600 | 0.3885 |
|
| 473 |
+
| 0.2459 | 15700 | 0.3324 |
|
| 474 |
+
| 0.2475 | 15800 | 0.3553 |
|
| 475 |
+
| 0.2490 | 15900 | 0.3201 |
|
| 476 |
+
| 0.2506 | 16000 | 0.4078 |
|
| 477 |
+
| 0.2522 | 16100 | 0.3919 |
|
| 478 |
+
| 0.2537 | 16200 | 0.3505 |
|
| 479 |
+
| 0.2553 | 16300 | 0.3423 |
|
| 480 |
+
| 0.2569 | 16400 | 0.3018 |
|
| 481 |
+
| 0.2584 | 16500 | 0.3392 |
|
| 482 |
+
| 0.2600 | 16600 | 0.3128 |
|
| 483 |
+
| 0.2616 | 16700 | 0.3542 |
|
| 484 |
+
| 0.2631 | 16800 | 0.3639 |
|
| 485 |
+
| 0.2647 | 16900 | 0.3765 |
|
| 486 |
+
| 0.2662 | 17000 | 0.3405 |
|
| 487 |
+
| 0.2678 | 17100 | 0.326 |
|
| 488 |
+
| 0.2694 | 17200 | 0.3591 |
|
| 489 |
+
| 0.2709 | 17300 | 0.3087 |
|
| 490 |
+
| 0.2725 | 17400 | 0.3336 |
|
| 491 |
+
| 0.2741 | 17500 | 0.2889 |
|
| 492 |
+
| 0.2756 | 17600 | 0.3341 |
|
| 493 |
+
| 0.2772 | 17700 | 0.3468 |
|
| 494 |
+
| 0.2788 | 17800 | 0.3033 |
|
| 495 |
+
| 0.2803 | 17900 | 0.3482 |
|
| 496 |
+
| 0.2819 | 18000 | 0.3649 |
|
| 497 |
+
| 0.2835 | 18100 | 0.3134 |
|
| 498 |
+
| 0.2850 | 18200 | 0.3264 |
|
| 499 |
+
| 0.2866 | 18300 | 0.3127 |
|
| 500 |
+
| 0.2882 | 18400 | 0.3483 |
|
| 501 |
+
| 0.2897 | 18500 | 0.349 |
|
| 502 |
+
| 0.2913 | 18600 | 0.2957 |
|
| 503 |
+
| 0.2929 | 18700 | 0.3443 |
|
| 504 |
+
| 0.2944 | 18800 | 0.2884 |
|
| 505 |
+
| 0.2960 | 18900 | 0.34 |
|
| 506 |
+
| 0.2976 | 19000 | 0.2875 |
|
| 507 |
+
| 0.2991 | 19100 | 0.3322 |
|
| 508 |
+
| 0.3007 | 19200 | 0.3438 |
|
| 509 |
+
| 0.3023 | 19300 | 0.3188 |
|
| 510 |
+
| 0.3038 | 19400 | 0.3315 |
|
| 511 |
+
| 0.3054 | 19500 | 0.3018 |
|
| 512 |
+
| 0.3070 | 19600 | 0.331 |
|
| 513 |
+
| 0.3085 | 19700 | 0.34 |
|
| 514 |
+
| 0.3101 | 19800 | 0.2819 |
|
| 515 |
+
| 0.3117 | 19900 | 0.3218 |
|
| 516 |
+
| 0.3132 | 20000 | 0.3026 |
|
| 517 |
+
| 0.3148 | 20100 | 0.3341 |
|
| 518 |
+
| 0.3164 | 20200 | 0.285 |
|
| 519 |
+
| 0.3179 | 20300 | 0.3076 |
|
| 520 |
+
| 0.3195 | 20400 | 0.3262 |
|
| 521 |
+
| 0.3211 | 20500 | 0.3225 |
|
| 522 |
+
| 0.3226 | 20600 | 0.293 |
|
| 523 |
+
| 0.3242 | 20700 | 0.3187 |
|
| 524 |
+
| 0.3258 | 20800 | 0.3255 |
|
| 525 |
+
| 0.3273 | 20900 | 0.2978 |
|
| 526 |
+
| 0.3289 | 21000 | 0.2946 |
|
| 527 |
+
| 0.3305 | 21100 | 0.2887 |
|
| 528 |
+
| 0.3320 | 21200 | 0.3098 |
|
| 529 |
+
| 0.3336 | 21300 | 0.2942 |
|
| 530 |
+
| 0.3352 | 21400 | 0.3134 |
|
| 531 |
+
| 0.3367 | 21500 | 0.267 |
|
| 532 |
+
| 0.3383 | 21600 | 0.2907 |
|
| 533 |
+
| 0.3399 | 21700 | 0.2919 |
|
| 534 |
+
| 0.3414 | 21800 | 0.2985 |
|
| 535 |
+
| 0.3430 | 21900 | 0.2815 |
|
| 536 |
+
| 0.3446 | 22000 | 0.2785 |
|
| 537 |
+
| 0.3461 | 22100 | 0.2932 |
|
| 538 |
+
| 0.3477 | 22200 | 0.2599 |
|
| 539 |
+
| 0.3493 | 22300 | 0.2697 |
|
| 540 |
+
| 0.3508 | 22400 | 0.3206 |
|
| 541 |
+
| 0.3524 | 22500 | 0.2874 |
|
| 542 |
+
| 0.3540 | 22600 | 0.2947 |
|
| 543 |
+
| 0.3555 | 22700 | 0.2863 |
|
| 544 |
+
| 0.3571 | 22800 | 0.2906 |
|
| 545 |
+
| 0.3587 | 22900 | 0.3155 |
|
| 546 |
+
| 0.3602 | 23000 | 0.304 |
|
| 547 |
+
| 0.3618 | 23100 | 0.2769 |
|
| 548 |
+
| 0.3634 | 23200 | 0.3024 |
|
| 549 |
+
| 0.3649 | 23300 | 0.2877 |
|
| 550 |
+
| 0.3665 | 23400 | 0.2907 |
|
| 551 |
+
| 0.3681 | 23500 | 0.2813 |
|
| 552 |
+
| 0.3696 | 23600 | 0.3059 |
|
| 553 |
+
| 0.3712 | 23700 | 0.3004 |
|
| 554 |
+
| 0.3727 | 23800 | 0.261 |
|
| 555 |
+
| 0.3743 | 23900 | 0.2952 |
|
| 556 |
+
| 0.3759 | 24000 | 0.2687 |
|
| 557 |
+
| 0.3774 | 24100 | 0.2645 |
|
| 558 |
+
| 0.3790 | 24200 | 0.323 |
|
| 559 |
+
| 0.3806 | 24300 | 0.2982 |
|
| 560 |
+
| 0.3821 | 24400 | 0.2797 |
|
| 561 |
+
| 0.3837 | 24500 | 0.2661 |
|
| 562 |
+
| 0.3853 | 24600 | 0.251 |
|
| 563 |
+
| 0.3868 | 24700 | 0.2991 |
|
| 564 |
+
| 0.3884 | 24800 | 0.2634 |
|
| 565 |
+
| 0.3900 | 24900 | 0.2716 |
|
| 566 |
+
| 0.3915 | 25000 | 0.2902 |
|
| 567 |
+
| 0.3931 | 25100 | 0.276 |
|
| 568 |
+
| 0.3947 | 25200 | 0.2695 |
|
| 569 |
+
| 0.3962 | 25300 | 0.2415 |
|
| 570 |
+
| 0.3978 | 25400 | 0.2694 |
|
| 571 |
+
| 0.3994 | 25500 | 0.2604 |
|
| 572 |
+
| 0.4009 | 25600 | 0.2966 |
|
| 573 |
+
| 0.4025 | 25700 | 0.2798 |
|
| 574 |
+
| 0.4041 | 25800 | 0.2354 |
|
| 575 |
+
| 0.4056 | 25900 | 0.3068 |
|
| 576 |
+
| 0.4072 | 26000 | 0.2434 |
|
| 577 |
+
| 0.4088 | 26100 | 0.24 |
|
| 578 |
+
| 0.4103 | 26200 | 0.2888 |
|
| 579 |
+
| 0.4119 | 26300 | 0.2525 |
|
| 580 |
+
| 0.4135 | 26400 | 0.2632 |
|
| 581 |
+
| 0.4150 | 26500 | 0.2643 |
|
| 582 |
+
| 0.4166 | 26600 | 0.2585 |
|
| 583 |
+
| 0.4182 | 26700 | 0.236 |
|
| 584 |
+
| 0.4197 | 26800 | 0.2796 |
|
| 585 |
+
| 0.4213 | 26900 | 0.2658 |
|
| 586 |
+
| 0.4229 | 27000 | 0.241 |
|
| 587 |
+
| 0.4244 | 27100 | 0.2764 |
|
| 588 |
+
| 0.4260 | 27200 | 0.2534 |
|
| 589 |
+
| 0.4276 | 27300 | 0.2572 |
|
| 590 |
+
| 0.4291 | 27400 | 0.2513 |
|
| 591 |
+
| 0.4307 | 27500 | 0.2254 |
|
| 592 |
+
| 0.4323 | 27600 | 0.2734 |
|
| 593 |
+
| 0.4338 | 27700 | 0.2459 |
|
| 594 |
+
| 0.4354 | 27800 | 0.2202 |
|
| 595 |
+
| 0.4370 | 27900 | 0.2583 |
|
| 596 |
+
| 0.4385 | 28000 | 0.2741 |
|
| 597 |
+
| 0.4401 | 28100 | 0.2329 |
|
| 598 |
+
| 0.4417 | 28200 | 0.2262 |
|
| 599 |
+
| 0.4432 | 28300 | 0.2573 |
|
| 600 |
+
| 0.4448 | 28400 | 0.2559 |
|
| 601 |
+
| 0.4464 | 28500 | 0.3188 |
|
| 602 |
+
| 0.4479 | 28600 | 0.2431 |
|
| 603 |
+
| 0.4495 | 28700 | 0.275 |
|
| 604 |
+
| 0.4511 | 28800 | 0.25 |
|
| 605 |
+
| 0.4526 | 28900 | 0.2721 |
|
| 606 |
+
| 0.4542 | 29000 | 0.2401 |
|
| 607 |
+
| 0.4558 | 29100 | 0.2435 |
|
| 608 |
+
| 0.4573 | 29200 | 0.2703 |
|
| 609 |
+
| 0.4589 | 29300 | 0.2266 |
|
| 610 |
+
| 0.4605 | 29400 | 0.263 |
|
| 611 |
+
| 0.4620 | 29500 | 0.242 |
|
| 612 |
+
| 0.4636 | 29600 | 0.2844 |
|
| 613 |
+
| 0.4652 | 29700 | 0.2317 |
|
| 614 |
+
| 0.4667 | 29800 | 0.2768 |
|
| 615 |
+
| 0.4683 | 29900 | 0.2496 |
|
| 616 |
+
| 0.4699 | 30000 | 0.2377 |
|
| 617 |
+
| 0.4714 | 30100 | 0.2813 |
|
| 618 |
+
| 0.4730 | 30200 | 0.2175 |
|
| 619 |
+
| 0.4745 | 30300 | 0.2502 |
|
| 620 |
+
| 0.4761 | 30400 | 0.2591 |
|
| 621 |
+
| 0.4777 | 30500 | 0.2547 |
|
| 622 |
+
| 0.4792 | 30600 | 0.2521 |
|
| 623 |
+
| 0.4808 | 30700 | 0.263 |
|
| 624 |
+
| 0.4824 | 30800 | 0.1986 |
|
| 625 |
+
| 0.4839 | 30900 | 0.2437 |
|
| 626 |
+
| 0.4855 | 31000 | 0.2397 |
|
| 627 |
+
| 0.4871 | 31100 | 0.2424 |
|
| 628 |
+
| 0.4886 | 31200 | 0.2785 |
|
| 629 |
+
| 0.4902 | 31300 | 0.2517 |
|
| 630 |
+
| 0.4918 | 31400 | 0.2467 |
|
| 631 |
+
| 0.4933 | 31500 | 0.242 |
|
| 632 |
+
| 0.4949 | 31600 | 0.26 |
|
| 633 |
+
| 0.4965 | 31700 | 0.2345 |
|
| 634 |
+
| 0.4980 | 31800 | 0.2228 |
|
| 635 |
+
| 0.4996 | 31900 | 0.2455 |
|
| 636 |
+
| 0.5012 | 32000 | 0.2505 |
|
| 637 |
+
| 0.5027 | 32100 | 0.2352 |
|
| 638 |
+
| 0.5043 | 32200 | 0.2529 |
|
| 639 |
+
| 0.5059 | 32300 | 0.2537 |
|
| 640 |
+
| 0.5074 | 32400 | 0.2147 |
|
| 641 |
+
| 0.5090 | 32500 | 0.2085 |
|
| 642 |
+
| 0.5106 | 32600 | 0.2472 |
|
| 643 |
+
| 0.5121 | 32700 | 0.2487 |
|
| 644 |
+
| 0.5137 | 32800 | 0.2543 |
|
| 645 |
+
| 0.5153 | 32900 | 0.2519 |
|
| 646 |
+
| 0.5168 | 33000 | 0.2589 |
|
| 647 |
+
| 0.5184 | 33100 | 0.2232 |
|
| 648 |
+
| 0.5200 | 33200 | 0.2148 |
|
| 649 |
+
| 0.5215 | 33300 | 0.2377 |
|
| 650 |
+
| 0.5231 | 33400 | 0.2311 |
|
| 651 |
+
| 0.5247 | 33500 | 0.2153 |
|
| 652 |
+
| 0.5262 | 33600 | 0.2138 |
|
| 653 |
+
| 0.5278 | 33700 | 0.218 |
|
| 654 |
+
| 0.5294 | 33800 | 0.2298 |
|
| 655 |
+
| 0.5309 | 33900 | 0.2663 |
|
| 656 |
+
| 0.5325 | 34000 | 0.2489 |
|
| 657 |
+
| 0.5341 | 34100 | 0.2129 |
|
| 658 |
+
| 0.5356 | 34200 | 0.2298 |
|
| 659 |
+
| 0.5372 | 34300 | 0.2742 |
|
| 660 |
+
| 0.5388 | 34400 | 0.2389 |
|
| 661 |
+
| 0.5403 | 34500 | 0.2232 |
|
| 662 |
+
| 0.5419 | 34600 | 0.1931 |
|
| 663 |
+
| 0.5435 | 34700 | 0.2504 |
|
| 664 |
+
| 0.5450 | 34800 | 0.2349 |
|
| 665 |
+
| 0.5466 | 34900 | 0.22 |
|
| 666 |
+
| 0.5482 | 35000 | 0.249 |
|
| 667 |
+
| 0.5497 | 35100 | 0.2541 |
|
| 668 |
+
| 0.5513 | 35200 | 0.2406 |
|
| 669 |
+
| 0.5529 | 35300 | 0.2168 |
|
| 670 |
+
| 0.5544 | 35400 | 0.2481 |
|
| 671 |
+
| 0.5560 | 35500 | 0.2274 |
|
| 672 |
+
| 0.5576 | 35600 | 0.2168 |
|
| 673 |
+
| 0.5591 | 35700 | 0.2443 |
|
| 674 |
+
| 0.5607 | 35800 | 0.2378 |
|
| 675 |
+
| 0.5623 | 35900 | 0.2364 |
|
| 676 |
+
| 0.5638 | 36000 | 0.2232 |
|
| 677 |
+
| 0.5654 | 36100 | 0.2044 |
|
| 678 |
+
| 0.5670 | 36200 | 0.2153 |
|
| 679 |
+
| 0.5685 | 36300 | 0.2178 |
|
| 680 |
+
| 0.5701 | 36400 | 0.2314 |
|
| 681 |
+
| 0.5717 | 36500 | 0.2448 |
|
| 682 |
+
| 0.5732 | 36600 | 0.2652 |
|
| 683 |
+
| 0.5748 | 36700 | 0.2315 |
|
| 684 |
+
| 0.5764 | 36800 | 0.2071 |
|
| 685 |
+
| 0.5779 | 36900 | 0.2267 |
|
| 686 |
+
| 0.5795 | 37000 | 0.2797 |
|
| 687 |
+
| 0.5810 | 37100 | 0.2053 |
|
| 688 |
+
| 0.5826 | 37200 | 0.2331 |
|
| 689 |
+
| 0.5842 | 37300 | 0.2231 |
|
| 690 |
+
| 0.5857 | 37400 | 0.2135 |
|
| 691 |
+
| 0.5873 | 37500 | 0.2424 |
|
| 692 |
+
| 0.5889 | 37600 | 0.2345 |
|
| 693 |
+
| 0.5904 | 37700 | 0.2111 |
|
| 694 |
+
| 0.5920 | 37800 | 0.2553 |
|
| 695 |
+
| 0.5936 | 37900 | 0.2252 |
|
| 696 |
+
| 0.5951 | 38000 | 0.2033 |
|
| 697 |
+
| 0.5967 | 38100 | 0.2284 |
|
| 698 |
+
| 0.5983 | 38200 | 0.213 |
|
| 699 |
+
| 0.5998 | 38300 | 0.195 |
|
| 700 |
+
| 0.6014 | 38400 | 0.1886 |
|
| 701 |
+
| 0.6030 | 38500 | 0.2192 |
|
| 702 |
+
| 0.6045 | 38600 | 0.2569 |
|
| 703 |
+
| 0.6061 | 38700 | 0.1765 |
|
| 704 |
+
| 0.6077 | 38800 | 0.2127 |
|
| 705 |
+
| 0.6092 | 38900 | 0.2213 |
|
| 706 |
+
| 0.6108 | 39000 | 0.2217 |
|
| 707 |
+
| 0.6124 | 39100 | 0.2163 |
|
| 708 |
+
| 0.6139 | 39200 | 0.2141 |
|
| 709 |
+
| 0.6155 | 39300 | 0.2255 |
|
| 710 |
+
| 0.6171 | 39400 | 0.2326 |
|
| 711 |
+
| 0.6186 | 39500 | 0.2005 |
|
| 712 |
+
| 0.6202 | 39600 | 0.2043 |
|
| 713 |
+
| 0.6218 | 39700 | 0.2122 |
|
| 714 |
+
| 0.6233 | 39800 | 0.2212 |
|
| 715 |
+
| 0.6249 | 39900 | 0.2265 |
|
| 716 |
+
| 0.6265 | 40000 | 0.2259 |
|
| 717 |
+
| 0.6280 | 40100 | 0.2456 |
|
| 718 |
+
| 0.6296 | 40200 | 0.2037 |
|
| 719 |
+
| 0.6312 | 40300 | 0.2082 |
|
| 720 |
+
| 0.6327 | 40400 | 0.2284 |
|
| 721 |
+
| 0.6343 | 40500 | 0.2246 |
|
| 722 |
+
| 0.6359 | 40600 | 0.1884 |
|
| 723 |
+
| 0.6374 | 40700 | 0.1909 |
|
| 724 |
+
| 0.6390 | 40800 | 0.2038 |
|
| 725 |
+
| 0.6406 | 40900 | 0.2249 |
|
| 726 |
+
| 0.6421 | 41000 | 0.2211 |
|
| 727 |
+
| 0.6437 | 41100 | 0.2267 |
|
| 728 |
+
| 0.6453 | 41200 | 0.1926 |
|
| 729 |
+
| 0.6468 | 41300 | 0.1787 |
|
| 730 |
+
| 0.6484 | 41400 | 0.2209 |
|
| 731 |
+
| 0.6500 | 41500 | 0.2091 |
|
| 732 |
+
| 0.6515 | 41600 | 0.2064 |
|
| 733 |
+
| 0.6531 | 41700 | 0.2093 |
|
| 734 |
+
| 0.6547 | 41800 | 0.2413 |
|
| 735 |
+
| 0.6562 | 41900 | 0.2141 |
|
| 736 |
+
| 0.6578 | 42000 | 0.2293 |
|
| 737 |
+
| 0.6594 | 42100 | 0.2084 |
|
| 738 |
+
| 0.6609 | 42200 | 0.2095 |
|
| 739 |
+
| 0.6625 | 42300 | 0.2162 |
|
| 740 |
+
| 0.6641 | 42400 | 0.2188 |
|
| 741 |
+
| 0.6656 | 42500 | 0.1992 |
|
| 742 |
+
| 0.6672 | 42600 | 0.2216 |
|
| 743 |
+
| 0.6688 | 42700 | 0.2338 |
|
| 744 |
+
| 0.6703 | 42800 | 0.1941 |
|
| 745 |
+
| 0.6719 | 42900 | 0.2122 |
|
| 746 |
+
| 0.6735 | 43000 | 0.194 |
|
| 747 |
+
| 0.6750 | 43100 | 0.2413 |
|
| 748 |
+
| 0.6766 | 43200 | 0.232 |
|
| 749 |
+
| 0.6782 | 43300 | 0.2115 |
|
| 750 |
+
| 0.6797 | 43400 | 0.2172 |
|
| 751 |
+
| 0.6813 | 43500 | 0.2122 |
|
| 752 |
+
| 0.6829 | 43600 | 0.2059 |
|
| 753 |
+
| 0.6844 | 43700 | 0.2085 |
|
| 754 |
+
| 0.6860 | 43800 | 0.2045 |
|
| 755 |
+
| 0.6875 | 43900 | 0.1893 |
|
| 756 |
+
| 0.6891 | 44000 | 0.204 |
|
| 757 |
+
| 0.6907 | 44100 | 0.1991 |
|
| 758 |
+
| 0.6922 | 44200 | 0.2342 |
|
| 759 |
+
| 0.6938 | 44300 | 0.1834 |
|
| 760 |
+
| 0.6954 | 44400 | 0.1979 |
|
| 761 |
+
| 0.6969 | 44500 | 0.2302 |
|
| 762 |
+
| 0.6985 | 44600 | 0.2144 |
|
| 763 |
+
| 0.7001 | 44700 | 0.185 |
|
| 764 |
+
| 0.7016 | 44800 | 0.2014 |
|
| 765 |
+
| 0.7032 | 44900 | 0.1772 |
|
| 766 |
+
| 0.7048 | 45000 | 0.1967 |
|
| 767 |
+
| 0.7063 | 45100 | 0.1924 |
|
| 768 |
+
| 0.7079 | 45200 | 0.2114 |
|
| 769 |
+
| 0.7095 | 45300 | 0.2091 |
|
| 770 |
+
| 0.7110 | 45400 | 0.2044 |
|
| 771 |
+
| 0.7126 | 45500 | 0.2246 |
|
| 772 |
+
| 0.7142 | 45600 | 0.2109 |
|
| 773 |
+
| 0.7157 | 45700 | 0.1772 |
|
| 774 |
+
| 0.7173 | 45800 | 0.1988 |
|
| 775 |
+
| 0.7189 | 45900 | 0.2183 |
|
| 776 |
+
| 0.7204 | 46000 | 0.1918 |
|
| 777 |
+
| 0.7220 | 46100 | 0.2332 |
|
| 778 |
+
| 0.7236 | 46200 | 0.2097 |
|
| 779 |
+
| 0.7251 | 46300 | 0.2005 |
|
| 780 |
+
| 0.7267 | 46400 | 0.189 |
|
| 781 |
+
| 0.7283 | 46500 | 0.1993 |
|
| 782 |
+
| 0.7298 | 46600 | 0.2224 |
|
| 783 |
+
| 0.7314 | 46700 | 0.2 |
|
| 784 |
+
| 0.7330 | 46800 | 0.1949 |
|
| 785 |
+
| 0.7345 | 46900 | 0.2061 |
|
| 786 |
+
| 0.7361 | 47000 | 0.211 |
|
| 787 |
+
| 0.7377 | 47100 | 0.2393 |
|
| 788 |
+
| 0.7392 | 47200 | 0.2498 |
|
| 789 |
+
| 0.7408 | 47300 | 0.1811 |
|
| 790 |
+
| 0.7424 | 47400 | 0.1873 |
|
| 791 |
+
| 0.7439 | 47500 | 0.2238 |
|
| 792 |
+
| 0.7455 | 47600 | 0.1918 |
|
| 793 |
+
| 0.7471 | 47700 | 0.1805 |
|
| 794 |
+
| 0.7486 | 47800 | 0.2256 |
|
| 795 |
+
| 0.7502 | 47900 | 0.1901 |
|
| 796 |
+
| 0.7518 | 48000 | 0.2344 |
|
| 797 |
+
| 0.7533 | 48100 | 0.2212 |
|
| 798 |
+
| 0.7549 | 48200 | 0.2089 |
|
| 799 |
+
| 0.7565 | 48300 | 0.2169 |
|
| 800 |
+
| 0.7580 | 48400 | 0.2152 |
|
| 801 |
+
| 0.7596 | 48500 | 0.1831 |
|
| 802 |
+
| 0.7612 | 48600 | 0.1521 |
|
| 803 |
+
| 0.7627 | 48700 | 0.2177 |
|
| 804 |
+
| 0.7643 | 48800 | 0.2035 |
|
| 805 |
+
| 0.7659 | 48900 | 0.1713 |
|
| 806 |
+
| 0.7674 | 49000 | 0.2547 |
|
| 807 |
+
| 0.7690 | 49100 | 0.1802 |
|
| 808 |
+
| 0.7706 | 49200 | 0.1975 |
|
| 809 |
+
| 0.7721 | 49300 | 0.2107 |
|
| 810 |
+
| 0.7737 | 49400 | 0.2078 |
|
| 811 |
+
| 0.7753 | 49500 | 0.1917 |
|
| 812 |
+
| 0.7768 | 49600 | 0.1917 |
|
| 813 |
+
| 0.7784 | 49700 | 0.1948 |
|
| 814 |
+
| 0.7800 | 49800 | 0.1881 |
|
| 815 |
+
| 0.7815 | 49900 | 0.1799 |
|
| 816 |
+
| 0.7831 | 50000 | 0.2184 |
|
| 817 |
+
| 0.7847 | 50100 | 0.2323 |
|
| 818 |
+
| 0.7862 | 50200 | 0.1949 |
|
| 819 |
+
| 0.7878 | 50300 | 0.1908 |
|
| 820 |
+
| 0.7894 | 50400 | 0.182 |
|
| 821 |
+
| 0.7909 | 50500 | 0.1783 |
|
| 822 |
+
| 0.7925 | 50600 | 0.2187 |
|
| 823 |
+
| 0.7940 | 50700 | 0.1711 |
|
| 824 |
+
| 0.7956 | 50800 | 0.2127 |
|
| 825 |
+
| 0.7972 | 50900 | 0.1886 |
|
| 826 |
+
| 0.7987 | 51000 | 0.1825 |
|
| 827 |
+
| 0.8003 | 51100 | 0.206 |
|
| 828 |
+
| 0.8019 | 51200 | 0.2058 |
|
| 829 |
+
| 0.8034 | 51300 | 0.2065 |
|
| 830 |
+
| 0.8050 | 51400 | 0.1857 |
|
| 831 |
+
| 0.8066 | 51500 | 0.1853 |
|
| 832 |
+
| 0.8081 | 51600 | 0.2035 |
|
| 833 |
+
| 0.8097 | 51700 | 0.194 |
|
| 834 |
+
| 0.8113 | 51800 | 0.2157 |
|
| 835 |
+
| 0.8128 | 51900 | 0.1965 |
|
| 836 |
+
| 0.8144 | 52000 | 0.1924 |
|
| 837 |
+
| 0.8160 | 52100 | 0.1995 |
|
| 838 |
+
| 0.8175 | 52200 | 0.2166 |
|
| 839 |
+
| 0.8191 | 52300 | 0.15 |
|
| 840 |
+
| 0.8207 | 52400 | 0.1507 |
|
| 841 |
+
| 0.8222 | 52500 | 0.2096 |
|
| 842 |
+
| 0.8238 | 52600 | 0.205 |
|
| 843 |
+
| 0.8254 | 52700 | 0.207 |
|
| 844 |
+
| 0.8269 | 52800 | 0.1735 |
|
| 845 |
+
| 0.8285 | 52900 | 0.1748 |
|
| 846 |
+
| 0.8301 | 53000 | 0.2401 |
|
| 847 |
+
| 0.8316 | 53100 | 0.1749 |
|
| 848 |
+
| 0.8332 | 53200 | 0.1996 |
|
| 849 |
+
| 0.8348 | 53300 | 0.194 |
|
| 850 |
+
| 0.8363 | 53400 | 0.1856 |
|
| 851 |
+
| 0.8379 | 53500 | 0.1926 |
|
| 852 |
+
| 0.8395 | 53600 | 0.1914 |
|
| 853 |
+
| 0.8410 | 53700 | 0.1988 |
|
| 854 |
+
| 0.8426 | 53800 | 0.1778 |
|
| 855 |
+
| 0.8442 | 53900 | 0.1884 |
|
| 856 |
+
| 0.8457 | 54000 | 0.1965 |
|
| 857 |
+
| 0.8473 | 54100 | 0.2086 |
|
| 858 |
+
| 0.8489 | 54200 | 0.1934 |
|
| 859 |
+
| 0.8504 | 54300 | 0.1789 |
|
| 860 |
+
| 0.8520 | 54400 | 0.1947 |
|
| 861 |
+
| 0.8536 | 54500 | 0.1768 |
|
| 862 |
+
| 0.8551 | 54600 | 0.2194 |
|
| 863 |
+
| 0.8567 | 54700 | 0.1944 |
|
| 864 |
+
| 0.8583 | 54800 | 0.1946 |
|
| 865 |
+
| 0.8598 | 54900 | 0.1998 |
|
| 866 |
+
| 0.8614 | 55000 | 0.1716 |
|
| 867 |
+
| 0.8630 | 55100 | 0.202 |
|
| 868 |
+
| 0.8645 | 55200 | 0.2069 |
|
| 869 |
+
| 0.8661 | 55300 | 0.2221 |
|
| 870 |
+
| 0.8677 | 55400 | 0.1859 |
|
| 871 |
+
| 0.8692 | 55500 | 0.1817 |
|
| 872 |
+
| 0.8708 | 55600 | 0.2091 |
|
| 873 |
+
| 0.8724 | 55700 | 0.1756 |
|
| 874 |
+
| 0.8739 | 55800 | 0.1982 |
|
| 875 |
+
| 0.8755 | 55900 | 0.1947 |
|
| 876 |
+
| 0.8771 | 56000 | 0.1745 |
|
| 877 |
+
| 0.8786 | 56100 | 0.1914 |
|
| 878 |
+
| 0.8802 | 56200 | 0.1867 |
|
| 879 |
+
| 0.8818 | 56300 | 0.1935 |
|
| 880 |
+
| 0.8833 | 56400 | 0.1844 |
|
| 881 |
+
| 0.8849 | 56500 | 0.1704 |
|
| 882 |
+
| 0.8865 | 56600 | 0.2127 |
|
| 883 |
+
| 0.8880 | 56700 | 0.224 |
|
| 884 |
+
| 0.8896 | 56800 | 0.2092 |
|
| 885 |
+
| 0.8912 | 56900 | 0.2042 |
|
| 886 |
+
| 0.8927 | 57000 | 0.1898 |
|
| 887 |
+
| 0.8943 | 57100 | 0.1515 |
|
| 888 |
+
| 0.8958 | 57200 | 0.1952 |
|
| 889 |
+
| 0.8974 | 57300 | 0.17 |
|
| 890 |
+
| 0.8990 | 57400 | 0.1843 |
|
| 891 |
+
| 0.9005 | 57500 | 0.2019 |
|
| 892 |
+
| 0.9021 | 57600 | 0.1724 |
|
| 893 |
+
| 0.9037 | 57700 | 0.1912 |
|
| 894 |
+
| 0.9052 | 57800 | 0.1979 |
|
| 895 |
+
| 0.9068 | 57900 | 0.2014 |
|
| 896 |
+
| 0.9084 | 58000 | 0.2063 |
|
| 897 |
+
| 0.9099 | 58100 | 0.1794 |
|
| 898 |
+
| 0.9115 | 58200 | 0.1972 |
|
| 899 |
+
| 0.9131 | 58300 | 0.1501 |
|
| 900 |
+
| 0.9146 | 58400 | 0.2001 |
|
| 901 |
+
| 0.9162 | 58500 | 0.2082 |
|
| 902 |
+
| 0.9178 | 58600 | 0.2076 |
|
| 903 |
+
| 0.9193 | 58700 | 0.1722 |
|
| 904 |
+
| 0.9209 | 58800 | 0.1954 |
|
| 905 |
+
| 0.9225 | 58900 | 0.1604 |
|
| 906 |
+
| 0.9240 | 59000 | 0.1816 |
|
| 907 |
+
| 0.9256 | 59100 | 0.1809 |
|
| 908 |
+
| 0.9272 | 59200 | 0.1762 |
|
| 909 |
+
| 0.9287 | 59300 | 0.215 |
|
| 910 |
+
| 0.9303 | 59400 | 0.1953 |
|
| 911 |
+
| 0.9319 | 59500 | 0.1865 |
|
| 912 |
+
| 0.9334 | 59600 | 0.208 |
|
| 913 |
+
| 0.9350 | 59700 | 0.2035 |
|
| 914 |
+
| 0.9366 | 59800 | 0.1966 |
|
| 915 |
+
| 0.9381 | 59900 | 0.1777 |
|
| 916 |
+
| 0.9397 | 60000 | 0.2044 |
|
| 917 |
+
| 0.9413 | 60100 | 0.1773 |
|
| 918 |
+
| 0.9428 | 60200 | 0.1843 |
|
| 919 |
+
| 0.9444 | 60300 | 0.1786 |
|
| 920 |
+
| 0.9460 | 60400 | 0.1958 |
|
| 921 |
+
| 0.9475 | 60500 | 0.1959 |
|
| 922 |
+
| 0.9491 | 60600 | 0.2047 |
|
| 923 |
+
| 0.9507 | 60700 | 0.2 |
|
| 924 |
+
| 0.9522 | 60800 | 0.1843 |
|
| 925 |
+
| 0.9538 | 60900 | 0.1946 |
|
| 926 |
+
| 0.9554 | 61000 | 0.1752 |
|
| 927 |
+
| 0.9569 | 61100 | 0.1724 |
|
| 928 |
+
| 0.9585 | 61200 | 0.1701 |
|
| 929 |
+
| 0.9601 | 61300 | 0.1791 |
|
| 930 |
+
| 0.9616 | 61400 | 0.1731 |
|
| 931 |
+
| 0.9632 | 61500 | 0.203 |
|
| 932 |
+
| 0.9648 | 61600 | 0.1985 |
|
| 933 |
+
| 0.9663 | 61700 | 0.1968 |
|
| 934 |
+
| 0.9679 | 61800 | 0.1719 |
|
| 935 |
+
| 0.9695 | 61900 | 0.1608 |
|
| 936 |
+
| 0.9710 | 62000 | 0.1691 |
|
| 937 |
+
| 0.9726 | 62100 | 0.1761 |
|
| 938 |
+
| 0.9742 | 62200 | 0.1805 |
|
| 939 |
+
| 0.9757 | 62300 | 0.1732 |
|
| 940 |
+
| 0.9773 | 62400 | 0.1657 |
|
| 941 |
+
| 0.9789 | 62500 | 0.1757 |
|
| 942 |
+
| 0.9804 | 62600 | 0.157 |
|
| 943 |
+
| 0.9820 | 62700 | 0.1995 |
|
| 944 |
+
| 0.9836 | 62800 | 0.1937 |
|
| 945 |
+
| 0.9851 | 62900 | 0.1839 |
|
| 946 |
+
| 0.9867 | 63000 | 0.194 |
|
| 947 |
+
| 0.9883 | 63100 | 0.1755 |
|
| 948 |
+
| 0.9898 | 63200 | 0.1819 |
|
| 949 |
+
| 0.9914 | 63300 | 0.1918 |
|
| 950 |
+
| 0.9930 | 63400 | 0.1636 |
|
| 951 |
+
| 0.9945 | 63500 | 0.1731 |
|
| 952 |
+
| 0.9961 | 63600 | 0.1671 |
|
| 953 |
+
| 0.9977 | 63700 | 0.1704 |
|
| 954 |
+
| 0.9992 | 63800 | 0.2089 |
|
| 955 |
+
|
| 956 |
+
* The bold row denotes the saved checkpoint.
|
| 957 |
+
</details>
|
| 958 |
+
|
| 959 |
+
### Framework Versions
|
| 960 |
+
- Python: 3.10.12
|
| 961 |
+
- Sentence Transformers: 3.3.1
|
| 962 |
+
- Transformers: 4.47.0
|
| 963 |
+
- PyTorch: 2.5.1+cu121
|
| 964 |
+
- Accelerate: 1.2.1
|
| 965 |
+
- Datasets: 3.2.0
|
| 966 |
+
- Tokenizers: 0.21.0
|
| 967 |
+
|
| 968 |
+
## Citation
|
| 969 |
+
|
| 970 |
+
### BibTeX
|
| 971 |
+
|
| 972 |
+
#### Sentence Transformers
|
| 973 |
+
```bibtex
|
| 974 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 975 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 976 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 977 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 978 |
+
month = "11",
|
| 979 |
+
year = "2019",
|
| 980 |
+
publisher = "Association for Computational Linguistics",
|
| 981 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 982 |
+
}
|
| 983 |
+
```
|
| 984 |
+
|
| 985 |
+
#### MultipleNegativesRankingLoss
|
| 986 |
+
```bibtex
|
| 987 |
+
@misc{henderson2017efficient,
|
| 988 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
| 989 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
| 990 |
+
year={2017},
|
| 991 |
+
eprint={1705.00652},
|
| 992 |
+
archivePrefix={arXiv},
|
| 993 |
+
primaryClass={cs.CL}
|
| 994 |
+
}
|
| 995 |
+
```
|
| 996 |
+
|
| 997 |
+
<!--
|
| 998 |
+
## Glossary
|
| 999 |
+
|
| 1000 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1001 |
+
-->
|
| 1002 |
+
|
| 1003 |
+
<!--
|
| 1004 |
+
## Model Card Authors
|
| 1005 |
+
|
| 1006 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1007 |
+
-->
|
| 1008 |
+
|
| 1009 |
+
<!--
|
| 1010 |
+
## Model Card Contact
|
| 1011 |
+
|
| 1012 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1013 |
+
-->
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.3.1",
|
| 4 |
+
"transformers": "4.47.0",
|
| 5 |
+
"pytorch": "2.5.1+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 256,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|