Update README.md
Browse files
README.md
CHANGED
|
@@ -8,23 +8,24 @@ tags:
|
|
| 8 |
- loss:MultipleNegativesRankingLoss
|
| 9 |
base_model: sentence-transformers/all-MiniLM-L6-v2
|
| 10 |
widget:
|
| 11 |
-
- source_sentence: عواقب ممنوعیت یادداشت های 500 روپیه و 1000 روپیه در مورد اقتصاد
|
| 12 |
-
هند چیست؟
|
| 13 |
sentences:
|
| 14 |
- آیا باید در فیزیک و علوم کامپیوتر دو برابر کنم؟
|
| 15 |
- چگونه اقتصاد هند پس از ممنوعیت 500 1000 یادداشت تحت تأثیر قرار گرفت؟
|
| 16 |
- آیا آلمان در اجازه پناهندگان سوری به کشور خود اشتباه کرد؟
|
| 17 |
-
- source_sentence: بهترین شماره پشتیبانی فنی QuickBooks در نیویورک ، ایالات متحده
|
| 18 |
-
کدام است؟
|
| 19 |
sentences:
|
| 20 |
- فناوری هایی که اکثر مردم از آنها نمی دانند چیست؟
|
| 21 |
- بهترین شماره پشتیبانی QuickBooks در آرکانزاس چیست؟
|
| 22 |
- چرا در مقایسه با طرف نزدیک ، دهانه های زیادی در قسمت دور ماه وجود دارد؟
|
| 23 |
-
- source_sentence:
|
| 24 |
-
در میشیگان
|
|
|
|
| 25 |
sentences:
|
| 26 |
- پیروزی ترامپ چگونه بر کانادا تأثیر خواهد گذاشت؟
|
| 27 |
-
-
|
|
|
|
|
|
|
| 28 |
- مزایای خرید بیمه عمر چیست؟
|
| 29 |
- source_sentence: چرا این همه افراد ناراضی هستند؟
|
| 30 |
sentences:
|
|
@@ -33,13 +34,23 @@ widget:
|
|
| 33 |
- چرا مردم ناراضی هستند؟
|
| 34 |
- source_sentence: برای تبدیل شدن به نویسنده برتر Quora ، چند بازدید و پاسخ لازم است؟
|
| 35 |
sentences:
|
| 36 |
-
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
pipeline_tag: sentence-similarity
|
| 42 |
library_name: sentence-transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
---
|
| 44 |
|
| 45 |
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
|
@@ -58,11 +69,6 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [s
|
|
| 58 |
<!-- - **Language:** Unknown -->
|
| 59 |
<!-- - **License:** Unknown -->
|
| 60 |
|
| 61 |
-
### Model Sources
|
| 62 |
-
|
| 63 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 64 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 65 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 66 |
|
| 67 |
### Full Model Architecture
|
| 68 |
|
|
@@ -144,480 +150,15 @@ You can finetune this model on your own dataset.
|
|
| 144 |
|
| 145 |
## Training Details
|
| 146 |
|
| 147 |
-
### Training Dataset
|
| 148 |
-
|
| 149 |
-
#### Unnamed Dataset
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
* Size: 131,157 training samples
|
| 153 |
-
* Columns: <code>anchor</code> and <code>positive</code>
|
| 154 |
-
* Approximate statistics based on the first 1000 samples:
|
| 155 |
-
| | anchor | positive |
|
| 156 |
-
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
| 157 |
-
| type | string | string |
|
| 158 |
-
| details | <ul><li>min: 11 tokens</li><li>mean: 44.91 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 44.6 tokens</li><li>max: 154 tokens</li></ul> |
|
| 159 |
-
* Samples:
|
| 160 |
-
| anchor | positive |
|
| 161 |
-
|:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 162 |
-
| <code>وقتی سوال من به عنوان "این سوال ممکن است به ویرایش نیاز داشته باشد" چه کاری باید انجام دهم ، اما نمی توانم دلیل آن را پیدا کنم؟</code> | <code>چرا سوال من به عنوان نیاز به پیشرفت مشخص شده است؟</code> |
|
| 163 |
-
| <code>چگونه می توانید یک فایل رمزگذاری شده را با دانستن اینکه این یک فایل تصویری است بدون دانستن گسترش پرونده یا کلید ، رمزگشایی کنید؟</code> | <code>چگونه می توانید یک فایل رمزگذاری شده را رمزگشایی کنید و بدانید که این یک فایل تصویری است بدون اینکه از پسوند پرونده اطلاع داشته باشید؟</code> |
|
| 164 |
-
| <code>احساس می کنم خودکشی می کنم ، چگونه باید با آن برخورد کنم؟</code> | <code>احساس می کنم خودکشی می کنم.چه کاری باید انجام دهم؟</code> |
|
| 165 |
-
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 166 |
-
```json
|
| 167 |
-
{
|
| 168 |
-
"scale": 20.0,
|
| 169 |
-
"similarity_fct": "cos_sim"
|
| 170 |
-
}
|
| 171 |
-
```
|
| 172 |
-
|
| 173 |
### Training Hyperparameters
|
| 174 |
#### Non-Default Hyperparameters
|
| 175 |
|
| 176 |
-
- `eval_strategy`: steps
|
| 177 |
-
- `per_device_train_batch_size`: 64
|
| 178 |
-
- `learning_rate`: 2e-05
|
| 179 |
-
- `weight_decay`: 0.01
|
| 180 |
-
- `num_train_epochs`: 15
|
| 181 |
-
- `warmup_ratio`: 0.1
|
| 182 |
-
- `push_to_hub`: True
|
| 183 |
-
- `hub_model_id`: codersan/validadted_all-MiniLM_onV9
|
| 184 |
-
- `batch_sampler`: no_duplicates
|
| 185 |
-
|
| 186 |
-
#### All Hyperparameters
|
| 187 |
-
<details><summary>Click to expand</summary>
|
| 188 |
-
|
| 189 |
-
- `overwrite_output_dir`: False
|
| 190 |
-
- `do_predict`: False
|
| 191 |
-
- `eval_strategy`: steps
|
| 192 |
-
- `prediction_loss_only`: True
|
| 193 |
- `per_device_train_batch_size`: 64
|
| 194 |
-
- `per_device_eval_batch_size`: 8
|
| 195 |
-
- `per_gpu_train_batch_size`: None
|
| 196 |
-
- `per_gpu_eval_batch_size`: None
|
| 197 |
-
- `gradient_accumulation_steps`: 1
|
| 198 |
-
- `eval_accumulation_steps`: None
|
| 199 |
-
- `torch_empty_cache_steps`: None
|
| 200 |
- `learning_rate`: 2e-05
|
| 201 |
- `weight_decay`: 0.01
|
| 202 |
-
- `adam_beta1`: 0.9
|
| 203 |
-
- `adam_beta2`: 0.999
|
| 204 |
-
- `adam_epsilon`: 1e-08
|
| 205 |
-
- `max_grad_norm`: 1
|
| 206 |
- `num_train_epochs`: 15
|
| 207 |
-
- `max_steps`: -1
|
| 208 |
-
- `lr_scheduler_type`: linear
|
| 209 |
-
- `lr_scheduler_kwargs`: {}
|
| 210 |
- `warmup_ratio`: 0.1
|
| 211 |
-
- `warmup_steps`: 0
|
| 212 |
-
- `log_level`: passive
|
| 213 |
-
- `log_level_replica`: warning
|
| 214 |
-
- `log_on_each_node`: True
|
| 215 |
-
- `logging_nan_inf_filter`: True
|
| 216 |
-
- `save_safetensors`: True
|
| 217 |
-
- `save_on_each_node`: False
|
| 218 |
-
- `save_only_model`: False
|
| 219 |
-
- `restore_callback_states_from_checkpoint`: False
|
| 220 |
-
- `no_cuda`: False
|
| 221 |
-
- `use_cpu`: False
|
| 222 |
-
- `use_mps_device`: False
|
| 223 |
-
- `seed`: 42
|
| 224 |
-
- `data_seed`: None
|
| 225 |
-
- `jit_mode_eval`: False
|
| 226 |
-
- `use_ipex`: False
|
| 227 |
-
- `bf16`: False
|
| 228 |
-
- `fp16`: False
|
| 229 |
-
- `fp16_opt_level`: O1
|
| 230 |
-
- `half_precision_backend`: auto
|
| 231 |
-
- `bf16_full_eval`: False
|
| 232 |
-
- `fp16_full_eval`: False
|
| 233 |
-
- `tf32`: None
|
| 234 |
-
- `local_rank`: 0
|
| 235 |
-
- `ddp_backend`: None
|
| 236 |
-
- `tpu_num_cores`: None
|
| 237 |
-
- `tpu_metrics_debug`: False
|
| 238 |
-
- `debug`: []
|
| 239 |
-
- `dataloader_drop_last`: False
|
| 240 |
-
- `dataloader_num_workers`: 0
|
| 241 |
-
- `dataloader_prefetch_factor`: None
|
| 242 |
-
- `past_index`: -1
|
| 243 |
-
- `disable_tqdm`: False
|
| 244 |
-
- `remove_unused_columns`: True
|
| 245 |
-
- `label_names`: None
|
| 246 |
-
- `load_best_model_at_end`: False
|
| 247 |
-
- `ignore_data_skip`: False
|
| 248 |
-
- `fsdp`: []
|
| 249 |
-
- `fsdp_min_num_params`: 0
|
| 250 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 251 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 252 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 253 |
-
- `deepspeed`: None
|
| 254 |
-
- `label_smoothing_factor`: 0.0
|
| 255 |
-
- `optim`: adamw_torch
|
| 256 |
-
- `optim_args`: None
|
| 257 |
-
- `adafactor`: False
|
| 258 |
-
- `group_by_length`: False
|
| 259 |
-
- `length_column_name`: length
|
| 260 |
-
- `ddp_find_unused_parameters`: None
|
| 261 |
-
- `ddp_bucket_cap_mb`: None
|
| 262 |
-
- `ddp_broadcast_buffers`: False
|
| 263 |
-
- `dataloader_pin_memory`: True
|
| 264 |
-
- `dataloader_persistent_workers`: False
|
| 265 |
-
- `skip_memory_metrics`: True
|
| 266 |
-
- `use_legacy_prediction_loop`: False
|
| 267 |
-
- `push_to_hub`: True
|
| 268 |
-
- `resume_from_checkpoint`: None
|
| 269 |
-
- `hub_model_id`: codersan/validadted_all-MiniLM_onV9
|
| 270 |
-
- `hub_strategy`: every_save
|
| 271 |
-
- `hub_private_repo`: None
|
| 272 |
-
- `hub_always_push`: False
|
| 273 |
-
- `gradient_checkpointing`: False
|
| 274 |
-
- `gradient_checkpointing_kwargs`: None
|
| 275 |
-
- `include_inputs_for_metrics`: False
|
| 276 |
-
- `include_for_metrics`: []
|
| 277 |
-
- `eval_do_concat_batches`: True
|
| 278 |
-
- `fp16_backend`: auto
|
| 279 |
-
- `push_to_hub_model_id`: None
|
| 280 |
-
- `push_to_hub_organization`: None
|
| 281 |
-
- `mp_parameters`:
|
| 282 |
-
- `auto_find_batch_size`: False
|
| 283 |
-
- `full_determinism`: False
|
| 284 |
-
- `torchdynamo`: None
|
| 285 |
-
- `ray_scope`: last
|
| 286 |
-
- `ddp_timeout`: 1800
|
| 287 |
-
- `torch_compile`: False
|
| 288 |
-
- `torch_compile_backend`: None
|
| 289 |
-
- `torch_compile_mode`: None
|
| 290 |
-
- `dispatch_batches`: None
|
| 291 |
-
- `split_batches`: None
|
| 292 |
-
- `include_tokens_per_second`: False
|
| 293 |
-
- `include_num_input_tokens_seen`: False
|
| 294 |
-
- `neftune_noise_alpha`: None
|
| 295 |
-
- `optim_target_modules`: None
|
| 296 |
-
- `batch_eval_metrics`: False
|
| 297 |
-
- `eval_on_start`: False
|
| 298 |
-
- `use_liger_kernel`: False
|
| 299 |
-
- `eval_use_gather_object`: False
|
| 300 |
-
- `average_tokens_across_devices`: False
|
| 301 |
-
- `prompts`: None
|
| 302 |
- `batch_sampler`: no_duplicates
|
| 303 |
-
- `multi_dataset_batch_sampler`: proportional
|
| 304 |
-
|
| 305 |
-
</details>
|
| 306 |
-
|
| 307 |
-
### Training Logs
|
| 308 |
-
<details><summary>Click to expand</summary>
|
| 309 |
-
|
| 310 |
-
| Epoch | Step | Training Loss |
|
| 311 |
-
|:-------:|:-----:|:-------------:|
|
| 312 |
-
| 0.0488 | 100 | 2.841 |
|
| 313 |
-
| 0.0976 | 200 | 2.1716 |
|
| 314 |
-
| 0.1463 | 300 | 1.5024 |
|
| 315 |
-
| 0.1951 | 400 | 1.2579 |
|
| 316 |
-
| 0.2439 | 500 | 1.1434 |
|
| 317 |
-
| 0.2927 | 600 | 1.0665 |
|
| 318 |
-
| 0.3415 | 700 | 0.9581 |
|
| 319 |
-
| 0.3902 | 800 | 0.9106 |
|
| 320 |
-
| 0.4390 | 900 | 0.87 |
|
| 321 |
-
| 0.4878 | 1000 | 0.7785 |
|
| 322 |
-
| 0.5366 | 1100 | 0.7591 |
|
| 323 |
-
| 0.5854 | 1200 | 0.6928 |
|
| 324 |
-
| 0.6341 | 1300 | 0.6778 |
|
| 325 |
-
| 0.6829 | 1400 | 0.6395 |
|
| 326 |
-
| 0.7317 | 1500 | 0.6145 |
|
| 327 |
-
| 0.7805 | 1600 | 0.5678 |
|
| 328 |
-
| 0.8293 | 1700 | 0.5602 |
|
| 329 |
-
| 0.8780 | 1800 | 0.5498 |
|
| 330 |
-
| 0.9268 | 1900 | 0.5292 |
|
| 331 |
-
| 0.9756 | 2000 | 0.4819 |
|
| 332 |
-
| 1.0244 | 2100 | 0.4717 |
|
| 333 |
-
| 1.0732 | 2200 | 0.4837 |
|
| 334 |
-
| 1.1220 | 2300 | 0.4404 |
|
| 335 |
-
| 1.1707 | 2400 | 0.4359 |
|
| 336 |
-
| 1.2195 | 2500 | 0.4121 |
|
| 337 |
-
| 1.2683 | 2600 | 0.434 |
|
| 338 |
-
| 1.3171 | 2700 | 0.4018 |
|
| 339 |
-
| 1.3659 | 2800 | 0.3866 |
|
| 340 |
-
| 1.4146 | 2900 | 0.3889 |
|
| 341 |
-
| 1.4634 | 3000 | 0.3595 |
|
| 342 |
-
| 1.5122 | 3100 | 0.3547 |
|
| 343 |
-
| 1.5610 | 3200 | 0.3517 |
|
| 344 |
-
| 1.6098 | 3300 | 0.3331 |
|
| 345 |
-
| 1.6585 | 3400 | 0.3228 |
|
| 346 |
-
| 1.7073 | 3500 | 0.3101 |
|
| 347 |
-
| 1.7561 | 3600 | 0.3071 |
|
| 348 |
-
| 1.8049 | 3700 | 0.288 |
|
| 349 |
-
| 1.8537 | 3800 | 0.3115 |
|
| 350 |
-
| 1.9024 | 3900 | 0.2777 |
|
| 351 |
-
| 1.9512 | 4000 | 0.2902 |
|
| 352 |
-
| 2.0 | 4100 | 0.2926 |
|
| 353 |
-
| 2.0488 | 4200 | 0.2958 |
|
| 354 |
-
| 2.0976 | 4300 | 0.2688 |
|
| 355 |
-
| 2.1463 | 4400 | 0.2647 |
|
| 356 |
-
| 2.1951 | 4500 | 0.2523 |
|
| 357 |
-
| 2.2439 | 4600 | 0.2681 |
|
| 358 |
-
| 2.2927 | 4700 | 0.2714 |
|
| 359 |
-
| 2.3415 | 4800 | 0.2575 |
|
| 360 |
-
| 2.3902 | 4900 | 0.2462 |
|
| 361 |
-
| 2.4390 | 5000 | 0.2466 |
|
| 362 |
-
| 2.4878 | 5100 | 0.2215 |
|
| 363 |
-
| 2.5366 | 5200 | 0.2424 |
|
| 364 |
-
| 2.5854 | 5300 | 0.2264 |
|
| 365 |
-
| 2.6341 | 5400 | 0.2252 |
|
| 366 |
-
| 2.6829 | 5500 | 0.2228 |
|
| 367 |
-
| 2.7317 | 5600 | 0.2337 |
|
| 368 |
-
| 2.7805 | 5700 | 0.1983 |
|
| 369 |
-
| 2.8293 | 5800 | 0.2156 |
|
| 370 |
-
| 2.8780 | 5900 | 0.2088 |
|
| 371 |
-
| 2.9268 | 6000 | 0.2196 |
|
| 372 |
-
| 2.9756 | 6100 | 0.2054 |
|
| 373 |
-
| 3.0244 | 6200 | 0.2114 |
|
| 374 |
-
| 3.0732 | 6300 | 0.2191 |
|
| 375 |
-
| 3.1220 | 6400 | 0.1899 |
|
| 376 |
-
| 3.1707 | 6500 | 0.1958 |
|
| 377 |
-
| 3.2195 | 6600 | 0.1907 |
|
| 378 |
-
| 3.2683 | 6700 | 0.2151 |
|
| 379 |
-
| 3.3171 | 6800 | 0.1918 |
|
| 380 |
-
| 3.3659 | 6900 | 0.1859 |
|
| 381 |
-
| 3.4146 | 7000 | 0.1962 |
|
| 382 |
-
| 3.4634 | 7100 | 0.1807 |
|
| 383 |
-
| 3.5122 | 7200 | 0.1874 |
|
| 384 |
-
| 3.5610 | 7300 | 0.179 |
|
| 385 |
-
| 3.6098 | 7400 | 0.1779 |
|
| 386 |
-
| 3.6585 | 7500 | 0.1726 |
|
| 387 |
-
| 3.7073 | 7600 | 0.1693 |
|
| 388 |
-
| 3.7561 | 7700 | 0.1708 |
|
| 389 |
-
| 3.8049 | 7800 | 0.1697 |
|
| 390 |
-
| 3.8537 | 7900 | 0.1744 |
|
| 391 |
-
| 3.9024 | 8000 | 0.1581 |
|
| 392 |
-
| 3.9512 | 8100 | 0.1761 |
|
| 393 |
-
| 4.0 | 8200 | 0.1724 |
|
| 394 |
-
| 4.0488 | 8300 | 0.1777 |
|
| 395 |
-
| 4.0976 | 8400 | 0.1591 |
|
| 396 |
-
| 4.1463 | 8500 | 0.1559 |
|
| 397 |
-
| 4.1951 | 8600 | 0.1518 |
|
| 398 |
-
| 4.2439 | 8700 | 0.1608 |
|
| 399 |
-
| 4.2927 | 8800 | 0.1751 |
|
| 400 |
-
| 4.3415 | 8900 | 0.1572 |
|
| 401 |
-
| 4.3902 | 9000 | 0.1498 |
|
| 402 |
-
| 4.4390 | 9100 | 0.16 |
|
| 403 |
-
| 4.4878 | 9200 | 0.137 |
|
| 404 |
-
| 4.5366 | 9300 | 0.1545 |
|
| 405 |
-
| 4.5854 | 9400 | 0.1443 |
|
| 406 |
-
| 4.6341 | 9500 | 0.1482 |
|
| 407 |
-
| 4.6829 | 9600 | 0.1383 |
|
| 408 |
-
| 4.7317 | 9700 | 0.1468 |
|
| 409 |
-
| 4.7805 | 9800 | 0.1331 |
|
| 410 |
-
| 4.8293 | 9900 | 0.1471 |
|
| 411 |
-
| 4.8780 | 10000 | 0.1352 |
|
| 412 |
-
| 4.9268 | 10100 | 0.1474 |
|
| 413 |
-
| 4.9756 | 10200 | 0.1465 |
|
| 414 |
-
| 5.0244 | 10300 | 0.1401 |
|
| 415 |
-
| 5.0732 | 10400 | 0.1488 |
|
| 416 |
-
| 5.1220 | 10500 | 0.1285 |
|
| 417 |
-
| 5.1707 | 10600 | 0.1326 |
|
| 418 |
-
| 5.2195 | 10700 | 0.1246 |
|
| 419 |
-
| 5.2683 | 10800 | 0.1532 |
|
| 420 |
-
| 5.3171 | 10900 | 0.1345 |
|
| 421 |
-
| 5.3659 | 11000 | 0.1246 |
|
| 422 |
-
| 5.4146 | 11100 | 0.1344 |
|
| 423 |
-
| 5.4634 | 11200 | 0.1214 |
|
| 424 |
-
| 5.5122 | 11300 | 0.1283 |
|
| 425 |
-
| 5.5610 | 11400 | 0.1235 |
|
| 426 |
-
| 5.6098 | 11500 | 0.1265 |
|
| 427 |
-
| 5.6585 | 11600 | 0.1248 |
|
| 428 |
-
| 5.7073 | 11700 | 0.1204 |
|
| 429 |
-
| 5.7561 | 11800 | 0.119 |
|
| 430 |
-
| 5.8049 | 11900 | 0.1174 |
|
| 431 |
-
| 5.8537 | 12000 | 0.1273 |
|
| 432 |
-
| 5.9024 | 12100 | 0.1107 |
|
| 433 |
-
| 5.9512 | 12200 | 0.1277 |
|
| 434 |
-
| 6.0 | 12300 | 0.1178 |
|
| 435 |
-
| 6.0488 | 12400 | 0.1286 |
|
| 436 |
-
| 6.0976 | 12500 | 0.1145 |
|
| 437 |
-
| 6.1463 | 12600 | 0.1164 |
|
| 438 |
-
| 6.1951 | 12700 | 0.1134 |
|
| 439 |
-
| 6.2439 | 12800 | 0.1211 |
|
| 440 |
-
| 6.2927 | 12900 | 0.125 |
|
| 441 |
-
| 6.3415 | 13000 | 0.1187 |
|
| 442 |
-
| 6.3902 | 13100 | 0.1108 |
|
| 443 |
-
| 6.4390 | 13200 | 0.1148 |
|
| 444 |
-
| 6.4878 | 13300 | 0.1046 |
|
| 445 |
-
| 6.5366 | 13400 | 0.1097 |
|
| 446 |
-
| 6.5854 | 13500 | 0.1066 |
|
| 447 |
-
| 6.6341 | 13600 | 0.1078 |
|
| 448 |
-
| 6.6829 | 13700 | 0.102 |
|
| 449 |
-
| 6.7317 | 13800 | 0.107 |
|
| 450 |
-
| 6.7805 | 13900 | 0.1008 |
|
| 451 |
-
| 6.8293 | 14000 | 0.1113 |
|
| 452 |
-
| 6.8780 | 14100 | 0.0987 |
|
| 453 |
-
| 6.9268 | 14200 | 0.1123 |
|
| 454 |
-
| 6.9756 | 14300 | 0.1062 |
|
| 455 |
-
| 7.0244 | 14400 | 0.1101 |
|
| 456 |
-
| 7.0732 | 14500 | 0.1129 |
|
| 457 |
-
| 7.1220 | 14600 | 0.0963 |
|
| 458 |
-
| 7.1707 | 14700 | 0.1053 |
|
| 459 |
-
| 7.2195 | 14800 | 0.0988 |
|
| 460 |
-
| 7.2683 | 14900 | 0.119 |
|
| 461 |
-
| 7.3171 | 15000 | 0.0993 |
|
| 462 |
-
| 7.3659 | 15100 | 0.0986 |
|
| 463 |
-
| 7.4146 | 15200 | 0.1012 |
|
| 464 |
-
| 7.4634 | 15300 | 0.0902 |
|
| 465 |
-
| 7.5122 | 15400 | 0.103 |
|
| 466 |
-
| 7.5610 | 15500 | 0.0961 |
|
| 467 |
-
| 7.6098 | 15600 | 0.0981 |
|
| 468 |
-
| 7.6585 | 15700 | 0.0972 |
|
| 469 |
-
| 7.7073 | 15800 | 0.0965 |
|
| 470 |
-
| 7.7561 | 15900 | 0.0916 |
|
| 471 |
-
| 7.8049 | 16000 | 0.0943 |
|
| 472 |
-
| 7.8537 | 16100 | 0.0973 |
|
| 473 |
-
| 7.9024 | 16200 | 0.0828 |
|
| 474 |
-
| 7.9512 | 16300 | 0.1036 |
|
| 475 |
-
| 8.0 | 16400 | 0.0986 |
|
| 476 |
-
| 8.0488 | 16500 | 0.1008 |
|
| 477 |
-
| 8.0976 | 16600 | 0.0897 |
|
| 478 |
-
| 8.1463 | 16700 | 0.092 |
|
| 479 |
-
| 8.1951 | 16800 | 0.0901 |
|
| 480 |
-
| 8.2439 | 16900 | 0.0979 |
|
| 481 |
-
| 8.2927 | 17000 | 0.0989 |
|
| 482 |
-
| 8.3415 | 17100 | 0.0937 |
|
| 483 |
-
| 8.3902 | 17200 | 0.0882 |
|
| 484 |
-
| 8.4390 | 17300 | 0.0902 |
|
| 485 |
-
| 8.4878 | 17400 | 0.0792 |
|
| 486 |
-
| 8.5366 | 17500 | 0.0893 |
|
| 487 |
-
| 8.5854 | 17600 | 0.0861 |
|
| 488 |
-
| 8.6341 | 17700 | 0.0866 |
|
| 489 |
-
| 8.6829 | 17800 | 0.0831 |
|
| 490 |
-
| 8.7317 | 17900 | 0.0893 |
|
| 491 |
-
| 8.7805 | 18000 | 0.0785 |
|
| 492 |
-
| 8.8293 | 18100 | 0.093 |
|
| 493 |
-
| 8.8780 | 18200 | 0.0815 |
|
| 494 |
-
| 8.9268 | 18300 | 0.0929 |
|
| 495 |
-
| 8.9756 | 18400 | 0.0869 |
|
| 496 |
-
| 9.0244 | 18500 | 0.0874 |
|
| 497 |
-
| 9.0732 | 18600 | 0.0944 |
|
| 498 |
-
| 9.1220 | 18700 | 0.0809 |
|
| 499 |
-
| 9.1707 | 18800 | 0.0845 |
|
| 500 |
-
| 9.2195 | 18900 | 0.0812 |
|
| 501 |
-
| 9.2683 | 19000 | 0.0966 |
|
| 502 |
-
| 9.3171 | 19100 | 0.0819 |
|
| 503 |
-
| 9.3659 | 19200 | 0.08 |
|
| 504 |
-
| 9.4146 | 19300 | 0.0849 |
|
| 505 |
-
| 9.4634 | 19400 | 0.0773 |
|
| 506 |
-
| 9.5122 | 19500 | 0.0822 |
|
| 507 |
-
| 9.5610 | 19600 | 0.0781 |
|
| 508 |
-
| 9.6098 | 19700 | 0.0798 |
|
| 509 |
-
| 9.6585 | 19800 | 0.0745 |
|
| 510 |
-
| 9.7073 | 19900 | 0.0763 |
|
| 511 |
-
| 9.7561 | 20000 | 0.074 |
|
| 512 |
-
| 9.8049 | 20100 | 0.0786 |
|
| 513 |
-
| 9.8537 | 20200 | 0.082 |
|
| 514 |
-
| 9.9024 | 20300 | 0.0685 |
|
| 515 |
-
| 9.9512 | 20400 | 0.0857 |
|
| 516 |
-
| 10.0 | 20500 | 0.0791 |
|
| 517 |
-
| 10.0488 | 20600 | 0.0865 |
|
| 518 |
-
| 10.0976 | 20700 | 0.0801 |
|
| 519 |
-
| 10.1463 | 20800 | 0.0792 |
|
| 520 |
-
| 10.1951 | 20900 | 0.0754 |
|
| 521 |
-
| 10.2439 | 21000 | 0.082 |
|
| 522 |
-
| 10.2927 | 21100 | 0.0849 |
|
| 523 |
-
| 10.3415 | 21200 | 0.0765 |
|
| 524 |
-
| 10.3902 | 21300 | 0.0749 |
|
| 525 |
-
| 10.4390 | 21400 | 0.0793 |
|
| 526 |
-
| 10.4878 | 21500 | 0.0702 |
|
| 527 |
-
| 10.5366 | 21600 | 0.0751 |
|
| 528 |
-
| 10.5854 | 21700 | 0.074 |
|
| 529 |
-
| 10.6341 | 21800 | 0.0733 |
|
| 530 |
-
| 10.6829 | 21900 | 0.0743 |
|
| 531 |
-
| 10.7317 | 22000 | 0.0747 |
|
| 532 |
-
| 10.7805 | 22100 | 0.0658 |
|
| 533 |
-
| 10.8293 | 22200 | 0.0787 |
|
| 534 |
-
| 10.8780 | 22300 | 0.07 |
|
| 535 |
-
| 10.9268 | 22400 | 0.0803 |
|
| 536 |
-
| 10.9756 | 22500 | 0.074 |
|
| 537 |
-
| 11.0244 | 22600 | 0.0737 |
|
| 538 |
-
| 11.0732 | 22700 | 0.0769 |
|
| 539 |
-
| 11.1220 | 22800 | 0.0652 |
|
| 540 |
-
| 11.1707 | 22900 | 0.0714 |
|
| 541 |
-
| 11.2195 | 23000 | 0.0682 |
|
| 542 |
-
| 11.2683 | 23100 | 0.0873 |
|
| 543 |
-
| 11.3171 | 23200 | 0.0693 |
|
| 544 |
-
| 11.3659 | 23300 | 0.069 |
|
| 545 |
-
| 11.4146 | 23400 | 0.0747 |
|
| 546 |
-
| 11.4634 | 23500 | 0.0647 |
|
| 547 |
-
| 11.5122 | 23600 | 0.0737 |
|
| 548 |
-
| 11.5610 | 23700 | 0.0714 |
|
| 549 |
-
| 11.6098 | 23800 | 0.0715 |
|
| 550 |
-
| 11.6585 | 23900 | 0.0666 |
|
| 551 |
-
| 11.7073 | 24000 | 0.0702 |
|
| 552 |
-
| 11.7561 | 24100 | 0.0643 |
|
| 553 |
-
| 11.8049 | 24200 | 0.0654 |
|
| 554 |
-
| 11.8537 | 24300 | 0.0685 |
|
| 555 |
-
| 11.9024 | 24400 | 0.0593 |
|
| 556 |
-
| 11.9512 | 24500 | 0.0775 |
|
| 557 |
-
| 12.0 | 24600 | 0.0721 |
|
| 558 |
-
| 12.0488 | 24700 | 0.076 |
|
| 559 |
-
| 12.0976 | 24800 | 0.0653 |
|
| 560 |
-
| 12.1463 | 24900 | 0.0677 |
|
| 561 |
-
| 12.1951 | 25000 | 0.0652 |
|
| 562 |
-
| 12.2439 | 25100 | 0.076 |
|
| 563 |
-
| 12.2927 | 25200 | 0.0741 |
|
| 564 |
-
| 12.3415 | 25300 | 0.0677 |
|
| 565 |
-
| 12.3902 | 25400 | 0.065 |
|
| 566 |
-
| 12.4390 | 25500 | 0.0709 |
|
| 567 |
-
| 12.4878 | 25600 | 0.0625 |
|
| 568 |
-
| 12.5366 | 25700 | 0.0666 |
|
| 569 |
-
| 12.5854 | 25800 | 0.0665 |
|
| 570 |
-
| 12.6341 | 25900 | 0.0679 |
|
| 571 |
-
| 12.6829 | 26000 | 0.0636 |
|
| 572 |
-
| 12.7317 | 26100 | 0.0638 |
|
| 573 |
-
| 12.7805 | 26200 | 0.0596 |
|
| 574 |
-
| 12.8293 | 26300 | 0.0693 |
|
| 575 |
-
| 12.8780 | 26400 | 0.0588 |
|
| 576 |
-
| 12.9268 | 26500 | 0.0726 |
|
| 577 |
-
| 12.9756 | 26600 | 0.0671 |
|
| 578 |
-
| 13.0244 | 26700 | 0.0666 |
|
| 579 |
-
| 13.0732 | 26800 | 0.0711 |
|
| 580 |
-
| 13.1220 | 26900 | 0.0604 |
|
| 581 |
-
| 13.1707 | 27000 | 0.0687 |
|
| 582 |
-
| 13.2195 | 27100 | 0.0613 |
|
| 583 |
-
| 13.2683 | 27200 | 0.0781 |
|
| 584 |
-
| 13.3171 | 27300 | 0.0596 |
|
| 585 |
-
| 13.3659 | 27400 | 0.0627 |
|
| 586 |
-
| 13.4146 | 27500 | 0.0655 |
|
| 587 |
-
| 13.4634 | 27600 | 0.0589 |
|
| 588 |
-
| 13.5122 | 27700 | 0.0633 |
|
| 589 |
-
| 13.5610 | 27800 | 0.0622 |
|
| 590 |
-
| 13.6098 | 27900 | 0.065 |
|
| 591 |
-
| 13.6585 | 28000 | 0.06 |
|
| 592 |
-
| 13.7073 | 28100 | 0.063 |
|
| 593 |
-
| 13.7561 | 28200 | 0.0589 |
|
| 594 |
-
| 13.8049 | 28300 | 0.0623 |
|
| 595 |
-
| 13.8537 | 28400 | 0.062 |
|
| 596 |
-
| 13.9024 | 28500 | 0.0559 |
|
| 597 |
-
| 13.9512 | 28600 | 0.0723 |
|
| 598 |
-
| 14.0 | 28700 | 0.0658 |
|
| 599 |
-
| 14.0488 | 28800 | 0.0687 |
|
| 600 |
-
| 14.0976 | 28900 | 0.0606 |
|
| 601 |
-
| 14.1463 | 29000 | 0.0622 |
|
| 602 |
-
| 14.1951 | 29100 | 0.0604 |
|
| 603 |
-
| 14.2439 | 29200 | 0.0657 |
|
| 604 |
-
| 14.2927 | 29300 | 0.067 |
|
| 605 |
-
| 14.3415 | 29400 | 0.0653 |
|
| 606 |
-
| 14.3902 | 29500 | 0.0587 |
|
| 607 |
-
| 14.4390 | 29600 | 0.0641 |
|
| 608 |
-
| 14.4878 | 29700 | 0.0558 |
|
| 609 |
-
| 14.5366 | 29800 | 0.0625 |
|
| 610 |
-
| 14.5854 | 29900 | 0.0613 |
|
| 611 |
-
| 14.6341 | 30000 | 0.0618 |
|
| 612 |
-
| 14.6829 | 30100 | 0.0596 |
|
| 613 |
-
| 14.7317 | 30200 | 0.0575 |
|
| 614 |
-
| 14.7805 | 30300 | 0.0552 |
|
| 615 |
-
| 14.8293 | 30400 | 0.0669 |
|
| 616 |
-
| 14.8780 | 30500 | 0.0552 |
|
| 617 |
-
| 14.9268 | 30600 | 0.0665 |
|
| 618 |
-
| 14.9756 | 30700 | 0.0625 |
|
| 619 |
-
|
| 620 |
-
</details>
|
| 621 |
|
| 622 |
### Framework Versions
|
| 623 |
- Python: 3.10.12
|
|
@@ -632,31 +173,12 @@ You can finetune this model on your own dataset.
|
|
| 632 |
|
| 633 |
### BibTeX
|
| 634 |
|
| 635 |
-
####
|
| 636 |
```bibtex
|
| 637 |
-
@inproceedings{reimers-2019-sentence-bert,
|
| 638 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 639 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
| 640 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 641 |
-
month = "11",
|
| 642 |
-
year = "2019",
|
| 643 |
-
publisher = "Association for Computational Linguistics",
|
| 644 |
-
url = "https://arxiv.org/abs/1908.10084",
|
| 645 |
-
}
|
| 646 |
-
```
|
| 647 |
|
| 648 |
-
#### MultipleNegativesRankingLoss
|
| 649 |
-
```bibtex
|
| 650 |
-
@misc{henderson2017efficient,
|
| 651 |
-
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
| 652 |
-
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
| 653 |
-
year={2017},
|
| 654 |
-
eprint={1705.00652},
|
| 655 |
-
archivePrefix={arXiv},
|
| 656 |
-
primaryClass={cs.CL}
|
| 657 |
-
}
|
| 658 |
```
|
| 659 |
|
|
|
|
| 660 |
<!--
|
| 661 |
## Glossary
|
| 662 |
|
|
|
|
| 8 |
- loss:MultipleNegativesRankingLoss
|
| 9 |
base_model: sentence-transformers/all-MiniLM-L6-v2
|
| 10 |
widget:
|
| 11 |
+
- source_sentence: عواقب ممنوعیت یادداشت های 500 روپیه و 1000 روپیه در مورد اقتصاد هند چیست؟
|
|
|
|
| 12 |
sentences:
|
| 13 |
- آیا باید در فیزیک و علوم کامپیوتر دو برابر کنم؟
|
| 14 |
- چگونه اقتصاد هند پس از ممنوعیت 500 1000 یادداشت تحت تأثیر قرار گرفت؟
|
| 15 |
- آیا آلمان در اجازه پناهندگان سوری به کشور خود اشتباه کرد؟
|
| 16 |
+
- source_sentence: بهترین شماره پشتیبانی فنی QuickBooks در نیویورک ، ایالات متحده کدام است؟
|
|
|
|
| 17 |
sentences:
|
| 18 |
- فناوری هایی که اکثر مردم از آنها نمی دانند چیست؟
|
| 19 |
- بهترین شماره پشتیبانی QuickBooks در آرکانزاس چیست؟
|
| 20 |
- چرا در مقایسه با طرف نزدیک ، دهانه های زیادی در قسمت دور ماه وجود دارد؟
|
| 21 |
+
- source_sentence: >-
|
| 22 |
+
اقدامات احتیاطی ایمنی در مورد استفاده از اسلحه های پیشنهادی NRA در میشیگان
|
| 23 |
+
چیست؟
|
| 24 |
sentences:
|
| 25 |
- پیروزی ترامپ چگونه بر کانادا تأثیر خواهد گذاشت؟
|
| 26 |
+
- >-
|
| 27 |
+
اقدامات احتیاطی ایمنی در مورد استفاده از اسلحه های پیشنهادی NRA در آیداهو
|
| 28 |
+
چیست؟
|
| 29 |
- مزایای خرید بیمه عمر چیست؟
|
| 30 |
- source_sentence: چرا این همه افراد ناراضی هستند؟
|
| 31 |
sentences:
|
|
|
|
| 34 |
- چرا مردم ناراضی هستند؟
|
| 35 |
- source_sentence: برای تبدیل شدن به نویسنده برتر Quora ، چند بازدید و پاسخ لازم است؟
|
| 36 |
sentences:
|
| 37 |
+
- >-
|
| 38 |
+
چگونه می توانم نویسنده برتر Quora شوم ، از صعود بیشتر و آمار بهتر استفاده
|
| 39 |
+
کنم؟
|
| 40 |
+
- >-
|
| 41 |
+
چرا بسیاری از افرادی که سؤالاتی را در Quora ارسال می کنند ، ابتدا Google را
|
| 42 |
+
بررسی می کنند؟
|
| 43 |
+
- >-
|
| 44 |
+
من به دنبال خرید دوچرخه جدید هستم.Suzuki Gixxer 155 یا Honda Hornet
|
| 45 |
+
160r.کدام یک را بخرید؟
|
| 46 |
pipeline_tag: sentence-similarity
|
| 47 |
library_name: sentence-transformers
|
| 48 |
+
license: mit
|
| 49 |
+
datasets:
|
| 50 |
+
- codersan/PersianSimilarSentences
|
| 51 |
+
language:
|
| 52 |
+
- fa
|
| 53 |
+
- en
|
| 54 |
---
|
| 55 |
|
| 56 |
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
|
|
|
| 69 |
<!-- - **Language:** Unknown -->
|
| 70 |
<!-- - **License:** Unknown -->
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
### Full Model Architecture
|
| 74 |
|
|
|
|
| 150 |
|
| 151 |
## Training Details
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
### Training Hyperparameters
|
| 154 |
#### Non-Default Hyperparameters
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
- `per_device_train_batch_size`: 64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
- `learning_rate`: 2e-05
|
| 158 |
- `weight_decay`: 0.01
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
- `num_train_epochs`: 15
|
|
|
|
|
|
|
|
|
|
| 160 |
- `warmup_ratio`: 0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
- `batch_sampler`: no_duplicates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
### Framework Versions
|
| 164 |
- Python: 3.10.12
|
|
|
|
| 173 |
|
| 174 |
### BibTeX
|
| 175 |
|
| 176 |
+
#### WikiFaQA paper
|
| 177 |
```bibtex
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
```
|
| 180 |
|
| 181 |
+
|
| 182 |
<!--
|
| 183 |
## Glossary
|
| 184 |
|