SentenceTransformer based on codersan/FaLabse
This is a sentence-transformers model finetuned from codersan/FaLabse. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: codersan/FaLabse
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/FaLabse_Mizan4")
# Run inference
sentences = [
'If this were continued, the barricade was no longer tenable.',
'اگر این کار مداومت می\u200cیافت، سنگر قادر به مقاومت نمی\u200cبود.',
'خوب، در این لحظه او یک محافظ داشت.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,021,596 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 16.37 tokens
- max: 85 tokens
- min: 3 tokens
- mean: 18.63 tokens
- max: 81 tokens
- Samples:
anchor positive They arose to obey.دختران برای اطاعت امر پدر از جا برخاستند.You'll know it all in timeهمه چیز را بم وقع خواهی دانست.She is in hysterics up there, and moans and says that we have been 'shamed and disgraced.او هر لحظه گرفتار یک وضع است، زارزار گریه میکند. میگوید به ما توهین کردهاند، حیثیتمان را لکهدار نمودند. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1load_best_model_at_end: Truepush_to_hub: Truehub_model_id: codersan/FaLabse_Mizan4eval_on_start: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: codersan/FaLabse_Mizan4hub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 0 | 0 | - |
| 0.0031 | 100 | 0.1023 |
| 0.0063 | 200 | 0.1162 |
| 0.0094 | 300 | 0.0976 |
| 0.0125 | 400 | 0.088 |
| 0.0157 | 500 | 0.0691 |
| 0.0188 | 600 | 0.0678 |
| 0.0219 | 700 | 0.082 |
| 0.0251 | 800 | 0.08 |
| 0.0282 | 900 | 0.0758 |
| 0.0313 | 1000 | 0.0763 |
| 0.0345 | 1100 | 0.0786 |
| 0.0376 | 1200 | 0.0666 |
| 0.0407 | 1300 | 0.0722 |
| 0.0439 | 1400 | 0.0638 |
| 0.0470 | 1500 | 0.0615 |
| 0.0501 | 1600 | 0.0623 |
| 0.0532 | 1700 | 0.0639 |
| 0.0564 | 1800 | 0.0692 |
| 0.0595 | 1900 | 0.0625 |
| 0.0626 | 2000 | 0.0774 |
| 0.0658 | 2100 | 0.06 |
| 0.0689 | 2200 | 0.0543 |
| 0.0720 | 2300 | 0.0611 |
| 0.0752 | 2400 | 0.0697 |
| 0.0783 | 2500 | 0.0703 |
| 0.0814 | 2600 | 0.058 |
| 0.0846 | 2700 | 0.075 |
| 0.0877 | 2800 | 0.062 |
| 0.0908 | 2900 | 0.0756 |
| 0.0940 | 3000 | 0.0668 |
| 0.0971 | 3100 | 0.054 |
| 0.1002 | 3200 | 0.0626 |
| 0.1034 | 3300 | 0.0645 |
| 0.1065 | 3400 | 0.0714 |
| 0.1096 | 3500 | 0.0644 |
| 0.1128 | 3600 | 0.0693 |
| 0.1159 | 3700 | 0.0734 |
| 0.1190 | 3800 | 0.0622 |
| 0.1222 | 3900 | 0.0741 |
| 0.1253 | 4000 | 0.0761 |
| 0.1284 | 4100 | 0.0582 |
| 0.1316 | 4200 | 0.0804 |
| 0.1347 | 4300 | 0.0708 |
| 0.1378 | 4400 | 0.0734 |
| 0.1410 | 4500 | 0.0709 |
| 0.1441 | 4600 | 0.0759 |
| 0.1472 | 4700 | 0.085 |
| 0.1504 | 4800 | 0.0573 |
| 0.1535 | 4900 | 0.056 |
| 0.1566 | 5000 | 0.0601 |
| 0.1597 | 5100 | 0.0596 |
| 0.1629 | 5200 | 0.079 |
| 0.1660 | 5300 | 0.0679 |
| 0.1691 | 5400 | 0.0553 |
| 0.1723 | 5500 | 0.0677 |
| 0.1754 | 5600 | 0.0795 |
| 0.1785 | 5700 | 0.0779 |
| 0.1817 | 5800 | 0.0599 |
| 0.1848 | 5900 | 0.0667 |
| 0.1879 | 6000 | 0.064 |
| 0.1911 | 6100 | 0.0637 |
| 0.1942 | 6200 | 0.0747 |
| 0.1973 | 6300 | 0.0829 |
| 0.2005 | 6400 | 0.0589 |
| 0.2036 | 6500 | 0.0623 |
| 0.2067 | 6600 | 0.0589 |
| 0.2099 | 6700 | 0.0648 |
| 0.2130 | 6800 | 0.0527 |
| 0.2161 | 6900 | 0.0519 |
| 0.2193 | 7000 | 0.0668 |
| 0.2224 | 7100 | 0.0729 |
| 0.2255 | 7200 | 0.0627 |
| 0.2287 | 7300 | 0.0539 |
| 0.2318 | 7400 | 0.055 |
| 0.2349 | 7500 | 0.0663 |
| 0.2381 | 7600 | 0.0589 |
| 0.2412 | 7700 | 0.0555 |
| 0.2443 | 7800 | 0.0875 |
| 0.2475 | 7900 | 0.055 |
| 0.2506 | 8000 | 0.0584 |
| 0.2537 | 8100 | 0.0607 |
| 0.2569 | 8200 | 0.0551 |
| 0.2600 | 8300 | 0.0527 |
| 0.2631 | 8400 | 0.0773 |
| 0.2662 | 8500 | 0.0696 |
| 0.2694 | 8600 | 0.062 |
| 0.2725 | 8700 | 0.0716 |
| 0.2756 | 8800 | 0.06 |
| 0.2788 | 8900 | 0.0536 |
| 0.2819 | 9000 | 0.0604 |
| 0.2850 | 9100 | 0.0563 |
| 0.2882 | 9200 | 0.0734 |
| 0.2913 | 9300 | 0.0714 |
| 0.2944 | 9400 | 0.0658 |
| 0.2976 | 9500 | 0.0623 |
| 0.3007 | 9600 | 0.0713 |
| 0.3038 | 9700 | 0.0674 |
| 0.3070 | 9800 | 0.0708 |
| 0.3101 | 9900 | 0.0579 |
| 0.3132 | 10000 | 0.0616 |
| 0.3164 | 10100 | 0.0653 |
| 0.3195 | 10200 | 0.0614 |
| 0.3226 | 10300 | 0.0626 |
| 0.3258 | 10400 | 0.0611 |
| 0.3289 | 10500 | 0.0521 |
| 0.3320 | 10600 | 0.056 |
| 0.3352 | 10700 | 0.0761 |
| 0.3383 | 10800 | 0.0629 |
| 0.3414 | 10900 | 0.0658 |
| 0.3446 | 11000 | 0.0576 |
| 0.3477 | 11100 | 0.0483 |
| 0.3508 | 11200 | 0.0654 |
| 0.3540 | 11300 | 0.0602 |
| 0.3571 | 11400 | 0.065 |
| 0.3602 | 11500 | 0.0787 |
| 0.3634 | 11600 | 0.0634 |
| 0.3665 | 11700 | 0.0678 |
| 0.3696 | 11800 | 0.0758 |
| 0.3727 | 11900 | 0.0637 |
| 0.3759 | 12000 | 0.0577 |
| 0.3790 | 12100 | 0.0572 |
| 0.3821 | 12200 | 0.0614 |
| 0.3853 | 12300 | 0.0685 |
| 0.3884 | 12400 | 0.0641 |
| 0.3915 | 12500 | 0.0583 |
| 0.3947 | 12600 | 0.0502 |
| 0.3978 | 12700 | 0.0481 |
| 0.4009 | 12800 | 0.0546 |
| 0.4041 | 12900 | 0.0664 |
| 0.4072 | 13000 | 0.0699 |
| 0.4103 | 13100 | 0.0513 |
| 0.4135 | 13200 | 0.0423 |
| 0.4166 | 13300 | 0.0554 |
| 0.4197 | 13400 | 0.0592 |
| 0.4229 | 13500 | 0.0457 |
| 0.4260 | 13600 | 0.0612 |
| 0.4291 | 13700 | 0.0507 |
| 0.4323 | 13800 | 0.0592 |
| 0.4354 | 13900 | 0.0566 |
| 0.4385 | 14000 | 0.0806 |
| 0.4417 | 14100 | 0.0648 |
| 0.4448 | 14200 | 0.0535 |
| 0.4479 | 14300 | 0.0748 |
| 0.4511 | 14400 | 0.0488 |
| 0.4542 | 14500 | 0.0539 |
| 0.4573 | 14600 | 0.0597 |
| 0.4605 | 14700 | 0.065 |
| 0.4636 | 14800 | 0.0594 |
| 0.4667 | 14900 | 0.05 |
| 0.4699 | 15000 | 0.0488 |
| 0.4730 | 15100 | 0.0537 |
| 0.4761 | 15200 | 0.0396 |
| 0.4792 | 15300 | 0.0616 |
| 0.4824 | 15400 | 0.0605 |
| 0.4855 | 15500 | 0.0599 |
| 0.4886 | 15600 | 0.0616 |
| 0.4918 | 15700 | 0.0731 |
| 0.4949 | 15800 | 0.0654 |
| 0.4980 | 15900 | 0.0463 |
| 0.5012 | 16000 | 0.0463 |
| 0.5043 | 16100 | 0.0594 |
| 0.5074 | 16200 | 0.0575 |
| 0.5106 | 16300 | 0.056 |
| 0.5137 | 16400 | 0.0542 |
| 0.5168 | 16500 | 0.052 |
| 0.5200 | 16600 | 0.0438 |
| 0.5231 | 16700 | 0.0675 |
| 0.5262 | 16800 | 0.0619 |
| 0.5294 | 16900 | 0.0515 |
| 0.5325 | 17000 | 0.0575 |
| 0.5356 | 17100 | 0.0568 |
| 0.5388 | 17200 | 0.0508 |
| 0.5419 | 17300 | 0.059 |
| 0.5450 | 17400 | 0.0505 |
| 0.5482 | 17500 | 0.0582 |
| 0.5513 | 17600 | 0.0574 |
| 0.5544 | 17700 | 0.0613 |
| 0.5576 | 17800 | 0.048 |
| 0.5607 | 17900 | 0.0553 |
| 0.5638 | 18000 | 0.0571 |
| 0.5670 | 18100 | 0.0543 |
| 0.5701 | 18200 | 0.0484 |
| 0.5732 | 18300 | 0.0763 |
| 0.5764 | 18400 | 0.056 |
| 0.5795 | 18500 | 0.0533 |
| 0.5826 | 18600 | 0.044 |
| 0.5857 | 18700 | 0.0515 |
| 0.5889 | 18800 | 0.0516 |
| 0.5920 | 18900 | 0.0586 |
| 0.5951 | 19000 | 0.0523 |
| 0.5983 | 19100 | 0.0733 |
| 0.6014 | 19200 | 0.0453 |
| 0.6045 | 19300 | 0.0663 |
| 0.6077 | 19400 | 0.0381 |
| 0.6108 | 19500 | 0.0568 |
| 0.6139 | 19600 | 0.0492 |
| 0.6171 | 19700 | 0.0489 |
| 0.6202 | 19800 | 0.0575 |
| 0.6233 | 19900 | 0.0642 |
| 0.6265 | 20000 | 0.0535 |
| 0.6296 | 20100 | 0.0598 |
| 0.6327 | 20200 | 0.0569 |
| 0.6359 | 20300 | 0.0513 |
| 0.6390 | 20400 | 0.0515 |
| 0.6421 | 20500 | 0.053 |
| 0.6453 | 20600 | 0.0569 |
| 0.6484 | 20700 | 0.0372 |
| 0.6515 | 20800 | 0.0464 |
| 0.6547 | 20900 | 0.0522 |
| 0.6578 | 21000 | 0.0427 |
| 0.6609 | 21100 | 0.0584 |
| 0.6641 | 21200 | 0.0616 |
| 0.6672 | 21300 | 0.0552 |
| 0.6703 | 21400 | 0.0509 |
| 0.6735 | 21500 | 0.0439 |
| 0.6766 | 21600 | 0.0762 |
| 0.6797 | 21700 | 0.0539 |
| 0.6829 | 21800 | 0.0475 |
| 0.6860 | 21900 | 0.0557 |
| 0.6891 | 22000 | 0.0421 |
| 0.6922 | 22100 | 0.0471 |
| 0.6954 | 22200 | 0.0398 |
| 0.6985 | 22300 | 0.0521 |
| 0.7016 | 22400 | 0.0472 |
| 0.7048 | 22500 | 0.0579 |
| 0.7079 | 22600 | 0.0539 |
| 0.7110 | 22700 | 0.0527 |
| 0.7142 | 22800 | 0.0677 |
| 0.7173 | 22900 | 0.0509 |
| 0.7204 | 23000 | 0.0478 |
| 0.7236 | 23100 | 0.0593 |
| 0.7267 | 23200 | 0.0419 |
| 0.7298 | 23300 | 0.0576 |
| 0.7330 | 23400 | 0.0485 |
| 0.7361 | 23500 | 0.0544 |
| 0.7392 | 23600 | 0.0537 |
| 0.7424 | 23700 | 0.0481 |
| 0.7455 | 23800 | 0.0597 |
| 0.7486 | 23900 | 0.0464 |
| 0.7518 | 24000 | 0.0537 |
| 0.7549 | 24100 | 0.0508 |
| 0.7580 | 24200 | 0.045 |
| 0.7612 | 24300 | 0.0337 |
| 0.7643 | 24400 | 0.0478 |
| 0.7674 | 24500 | 0.0495 |
| 0.7706 | 24600 | 0.0427 |
| 0.7737 | 24700 | 0.0596 |
| 0.7768 | 24800 | 0.0468 |
| 0.7800 | 24900 | 0.0404 |
| 0.7831 | 25000 | 0.0467 |
| 0.7862 | 25100 | 0.0514 |
| 0.7894 | 25200 | 0.0462 |
| 0.7925 | 25300 | 0.0401 |
| 0.7956 | 25400 | 0.0539 |
| 0.7987 | 25500 | 0.0541 |
| 0.8019 | 25600 | 0.0639 |
| 0.8050 | 25700 | 0.0392 |
| 0.8081 | 25800 | 0.0466 |
| 0.8113 | 25900 | 0.0543 |
| 0.8144 | 26000 | 0.0507 |
| 0.8175 | 26100 | 0.0465 |
| 0.8207 | 26200 | 0.0386 |
| 0.8238 | 26300 | 0.0606 |
| 0.8269 | 26400 | 0.0558 |
| 0.8301 | 26500 | 0.0488 |
| 0.8332 | 26600 | 0.0556 |
| 0.8363 | 26700 | 0.047 |
| 0.8395 | 26800 | 0.0548 |
| 0.8426 | 26900 | 0.0423 |
| 0.8457 | 27000 | 0.0529 |
| 0.8489 | 27100 | 0.0513 |
| 0.8520 | 27200 | 0.0432 |
| 0.8551 | 27300 | 0.0605 |
| 0.8583 | 27400 | 0.0448 |
| 0.8614 | 27500 | 0.0508 |
| 0.8645 | 27600 | 0.0578 |
| 0.8677 | 27700 | 0.0409 |
| 0.8708 | 27800 | 0.0487 |
| 0.8739 | 27900 | 0.058 |
| 0.8771 | 28000 | 0.0461 |
| 0.8802 | 28100 | 0.0389 |
| 0.8833 | 28200 | 0.0427 |
| 0.8865 | 28300 | 0.0473 |
| 0.8896 | 28400 | 0.061 |
| 0.8927 | 28500 | 0.0423 |
| 0.8958 | 28600 | 0.0435 |
| 0.8990 | 28700 | 0.0389 |
| 0.9021 | 28800 | 0.0466 |
| 0.9052 | 28900 | 0.042 |
| 0.9084 | 29000 | 0.0466 |
| 0.9115 | 29100 | 0.0412 |
| 0.9146 | 29200 | 0.0444 |
| 0.9178 | 29300 | 0.059 |
| 0.9209 | 29400 | 0.0466 |
| 0.9240 | 29500 | 0.0381 |
| 0.9272 | 29600 | 0.0408 |
| 0.9303 | 29700 | 0.0557 |
| 0.9334 | 29800 | 0.0567 |
| 0.9366 | 29900 | 0.0537 |
| 0.9397 | 30000 | 0.041 |
| 0.9428 | 30100 | 0.0383 |
| 0.9460 | 30200 | 0.0412 |
| 0.9491 | 30300 | 0.0489 |
| 0.9522 | 30400 | 0.046 |
| 0.9554 | 30500 | 0.0525 |
| 0.9585 | 30600 | 0.0493 |
| 0.9616 | 30700 | 0.0485 |
| 0.9648 | 30800 | 0.0532 |
| 0.9679 | 30900 | 0.0446 |
| 0.9710 | 31000 | 0.0372 |
| 0.9742 | 31100 | 0.0472 |
| 0.9773 | 31200 | 0.0399 |
| 0.9804 | 31300 | 0.0402 |
| 0.9836 | 31400 | 0.0372 |
| 0.9867 | 31500 | 0.0497 |
| 0.9898 | 31600 | 0.0432 |
| 0.9930 | 31700 | 0.0382 |
| 0.9961 | 31800 | 0.0475 |
| 0.9992 | 31900 | 0.0367 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- -