Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: tr
|
| 3 |
+
tags:
|
| 4 |
+
- sentiment-analysis
|
| 5 |
+
- turkish
|
| 6 |
+
- bert
|
| 7 |
+
- text-classification
|
| 8 |
+
license: apache-2.0
|
| 9 |
+
datasets:
|
| 10 |
+
- winvoker/turkish-sentiment-analysis-dataset
|
| 11 |
+
- WhiteAngelss/Turkce-Duygu-Analizi-Dataset
|
| 12 |
+
metrics:
|
| 13 |
+
- accuracy
|
| 14 |
+
- f1
|
| 15 |
+
- precision
|
| 16 |
+
- recall
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# Turkish Sentiment Analysis Model
|
| 20 |
+
|
| 21 |
+
A fine-tuned BERT model for Turkish sentiment analysis, trained on a combined dataset of 439,384 labeled Turkish sentences.
|
| 22 |
+
|
| 23 |
+
## Model Details
|
| 24 |
+
|
| 25 |
+
- **Base Model:** `dbmdz/bert-base-turkish-cased`
|
| 26 |
+
- **Task:** Text Classification (Sentiment Analysis)
|
| 27 |
+
- **Language:** Turkish
|
| 28 |
+
- **Labels:** positive, negative, neutral
|
| 29 |
+
|
| 30 |
+
## Training Data
|
| 31 |
+
|
| 32 |
+
The model was trained on a combination of two high-quality Turkish sentiment datasets:
|
| 33 |
+
- `winvoker/turkish-sentiment-analysis-dataset` (440,641 samples)
|
| 34 |
+
- `WhiteAngelss/Turkce-Duygu-Analizi-Dataset` (440,641 samples)
|
| 35 |
+
|
| 36 |
+
After deduplication and preprocessing, the final training set consisted of:
|
| 37 |
+
- **Training:** 351,507 samples
|
| 38 |
+
- **Validation:** 43,938 samples
|
| 39 |
+
- **Test:** 43,939 samples
|
| 40 |
+
|
| 41 |
+
### Label Distribution
|
| 42 |
+
|
| 43 |
+
- **Positive:** 234,957 (53.5%)
|
| 44 |
+
- **Neutral:** 153,809 (35.0%)
|
| 45 |
+
- **Negative:** 50,618 (11.5%)
|
| 46 |
+
|
| 47 |
+
## Training
|
| 48 |
+
|
| 49 |
+
- **Epochs:** 3
|
| 50 |
+
- **Learning Rate:** 2e-5
|
| 51 |
+
- **Batch Size:** 16
|
| 52 |
+
- **Max Length:** 128
|
| 53 |
+
- **Optimizer:** AdamW
|
| 54 |
+
|
| 55 |
+
## Usage
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 59 |
+
import torch
|
| 60 |
+
|
| 61 |
+
# Load model and tokenizer
|
| 62 |
+
model_name = "codealchemist01/turkish-sentiment-analysis"
|
| 63 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 64 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 65 |
+
|
| 66 |
+
# Example text
|
| 67 |
+
text = "Bu ürün gerçekten harika!"
|
| 68 |
+
|
| 69 |
+
# Tokenize
|
| 70 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128)
|
| 71 |
+
|
| 72 |
+
# Predict
|
| 73 |
+
with torch.no_grad():
|
| 74 |
+
outputs = model(**inputs)
|
| 75 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 76 |
+
predicted_label_id = predictions.argmax().item()
|
| 77 |
+
|
| 78 |
+
# Map to label
|
| 79 |
+
id2label = {0: "negative", 1: "neutral", 2: "positive"}
|
| 80 |
+
predicted_label = id2label[predicted_label_id]
|
| 81 |
+
confidence = predictions[0][predicted_label_id].item()
|
| 82 |
+
|
| 83 |
+
print(f"Label: {predicted_label}")
|
| 84 |
+
print(f"Confidence: {confidence:.4f}")
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
## Performance
|
| 88 |
+
|
| 89 |
+
Evaluation metrics on the test set (43,939 samples):
|
| 90 |
+
|
| 91 |
+
- **Accuracy:** 97.45%
|
| 92 |
+
- **Weighted F1:** 97.42%
|
| 93 |
+
- **Weighted Precision:** 97.41%
|
| 94 |
+
- **Weighted Recall:** 97.45%
|
| 95 |
+
|
| 96 |
+
### Per-Class Performance
|
| 97 |
+
|
| 98 |
+
| Class | Precision | Recall | F1-Score | Support |
|
| 99 |
+
|----------|-----------|--------|----------|---------|
|
| 100 |
+
| Negative | 91.42% | 86.69% | 88.99% | 5,062 |
|
| 101 |
+
| Neutral | 99.79% | 99.96% | 99.87% | 15,381 |
|
| 102 |
+
| Positive | 97.15% | 98.12% | 97.63% | 23,496 |
|
| 103 |
+
|
| 104 |
+
**Note:** Negative class has lower performance due to class imbalance (only 11.5% of the dataset). The model performs excellently on neutral and positive classes.
|
| 105 |
+
|
| 106 |
+
## Limitations
|
| 107 |
+
|
| 108 |
+
- The model may not perform well on very short texts (< 3 words)
|
| 109 |
+
- Performance may vary across different domains (social media, news, reviews)
|
| 110 |
+
- Class imbalance may affect performance on minority classes (negative)
|
| 111 |
+
|
| 112 |
+
## Citation
|
| 113 |
+
|
| 114 |
+
If you use this model, please cite:
|
| 115 |
+
|
| 116 |
+
```bibtex
|
| 117 |
+
@misc{turkish-sentiment-analysis,
|
| 118 |
+
title={Turkish Sentiment Analysis Model},
|
| 119 |
+
author={codealchemist01},
|
| 120 |
+
year={2024},
|
| 121 |
+
howpublished={\url{https://huggingface.co/codealchemist01/turkish-sentiment-analysis}}
|
| 122 |
+
}
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
## License
|
| 126 |
+
|
| 127 |
+
Apache 2.0
|
| 128 |
+
|