File size: 3,464 Bytes
dda1843 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
language: tr
tags:
- sentiment-analysis
- turkish
- bert
- text-classification
license: apache-2.0
datasets:
- winvoker/turkish-sentiment-analysis-dataset
- WhiteAngelss/Turkce-Duygu-Analizi-Dataset
metrics:
- accuracy
- f1
- precision
- recall
---
# Turkish Sentiment Analysis Model
A fine-tuned BERT model for Turkish sentiment analysis, trained on a combined dataset of 439,384 labeled Turkish sentences.
## Model Details
- **Base Model:** `dbmdz/bert-base-turkish-cased`
- **Task:** Text Classification (Sentiment Analysis)
- **Language:** Turkish
- **Labels:** positive, negative, neutral
## Training Data
The model was trained on a combination of two high-quality Turkish sentiment datasets:
- `winvoker/turkish-sentiment-analysis-dataset` (440,641 samples)
- `WhiteAngelss/Turkce-Duygu-Analizi-Dataset` (440,641 samples)
After deduplication and preprocessing, the final training set consisted of:
- **Training:** 351,507 samples
- **Validation:** 43,938 samples
- **Test:** 43,939 samples
### Label Distribution
- **Positive:** 234,957 (53.5%)
- **Neutral:** 153,809 (35.0%)
- **Negative:** 50,618 (11.5%)
## Training
- **Epochs:** 3
- **Learning Rate:** 2e-5
- **Batch Size:** 16
- **Max Length:** 128
- **Optimizer:** AdamW
## Usage
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model and tokenizer
model_name = "codealchemist01/turkish-sentiment-analysis"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Example text
text = "Bu ürün gerçekten harika!"
# Tokenize
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128)
# Predict
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_label_id = predictions.argmax().item()
# Map to label
id2label = {0: "negative", 1: "neutral", 2: "positive"}
predicted_label = id2label[predicted_label_id]
confidence = predictions[0][predicted_label_id].item()
print(f"Label: {predicted_label}")
print(f"Confidence: {confidence:.4f}")
```
## Performance
Evaluation metrics on the test set (43,939 samples):
- **Accuracy:** 97.45%
- **Weighted F1:** 97.42%
- **Weighted Precision:** 97.41%
- **Weighted Recall:** 97.45%
### Per-Class Performance
| Class | Precision | Recall | F1-Score | Support |
|----------|-----------|--------|----------|---------|
| Negative | 91.42% | 86.69% | 88.99% | 5,062 |
| Neutral | 99.79% | 99.96% | 99.87% | 15,381 |
| Positive | 97.15% | 98.12% | 97.63% | 23,496 |
**Note:** Negative class has lower performance due to class imbalance (only 11.5% of the dataset). The model performs excellently on neutral and positive classes.
## Limitations
- The model may not perform well on very short texts (< 3 words)
- Performance may vary across different domains (social media, news, reviews)
- Class imbalance may affect performance on minority classes (negative)
## Citation
If you use this model, please cite:
```bibtex
@misc{turkish-sentiment-analysis,
title={Turkish Sentiment Analysis Model},
author={codealchemist01},
year={2024},
howpublished={\url{https://huggingface.co/codealchemist01/turkish-sentiment-analysis}}
}
```
## License
Apache 2.0
|