codealchemist01 commited on
Commit
f564899
·
verified ·
1 Parent(s): 345d0ac

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +35 -45
README.md CHANGED
@@ -23,26 +23,19 @@ model-index:
23
  type: zeroshot/twitter-financial-news-sentiment
24
  metrics:
25
  - type: accuracy
26
- value: 0.821
27
- name: Accuracy
 
28
  ---
29
 
30
  # financial-sentiment-improved
31
 
32
- ## Model Description
33
-
34
- Improved financial sentiment analysis model with enhanced performance
35
-
36
- This model is fine-tuned from `distilbert-base-uncased` for financial sentiment analysis, capable of classifying financial text into three categories:
37
- - **Bearish** (0): Negative financial sentiment
38
- - **Neutral** (1): Neutral financial sentiment
39
- - **Bullish** (2): Positive financial sentiment
40
 
41
  ## Model Performance
42
 
43
- - **Accuracy**: 0.821
44
- - **Dataset**: Twitter Financial News Sentiment
45
- - **Base Model**: distilbert-base-uncased
46
 
47
  ## Usage
48
 
@@ -50,45 +43,42 @@ This model is fine-tuned from `distilbert-base-uncased` for financial sentiment
50
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
51
  import torch
52
 
53
- # Load model and tokenizer
54
  tokenizer = AutoTokenizer.from_pretrained("codealchemist01/financial-sentiment-improved")
55
  model = AutoModelForSequenceClassification.from_pretrained("codealchemist01/financial-sentiment-improved")
56
 
57
- # Example usage
58
- text = "Apple stock is showing strong growth potential"
59
- inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
60
-
61
- with torch.no_grad():
62
- outputs = model(**inputs)
63
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
 
64
  predicted_class = torch.argmax(predictions, dim=-1).item()
65
-
66
- # Labels: 0=Bearish, 1=Neutral, 2=Bullish
67
- labels = ["Bearish", "Neutral", "Bullish"]
68
- print(f"Prediction: {labels[predicted_class]}")
 
 
 
 
 
 
69
  ```
70
 
71
  ## Training Details
72
 
73
- - **Training Dataset**: Twitter Financial News Sentiment
74
- - **Training Framework**: Transformers
75
- - **Optimization**: AdamW
76
- - **Hardware**: RTX GPU
 
77
 
78
- ## Limitations
79
 
80
- This model is specifically trained for financial sentiment analysis and may not perform well on general sentiment analysis tasks.
81
-
82
- ## Citation
83
-
84
- If you use this model, please cite:
85
-
86
- ```bibtex
87
- @misc{financial-sentiment-improved,
88
- author = {CodeAlchemist01},
89
- title = {financial-sentiment-improved},
90
- year = {2024},
91
- publisher = {Hugging Face},
92
- url = {https://huggingface.co/codealchemist01/financial-sentiment-improved}
93
- }
94
- ```
 
23
  type: zeroshot/twitter-financial-news-sentiment
24
  metrics:
25
  - type: accuracy
26
+ value: 0.847
27
+ - type: f1
28
+ value: 0.845
29
  ---
30
 
31
  # financial-sentiment-improved
32
 
33
+ This model is a fine-tuned version of DistilBERT for financial sentiment analysis. It has been trained on financial news and social media data to classify text into three sentiment categories: Bearish (negative), Neutral, and Bullish (positive).
 
 
 
 
 
 
 
34
 
35
  ## Model Performance
36
 
37
+ - **Accuracy**: 0.847
38
+ - **F1 Score**: 0.845
 
39
 
40
  ## Usage
41
 
 
43
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
44
  import torch
45
 
 
46
  tokenizer = AutoTokenizer.from_pretrained("codealchemist01/financial-sentiment-improved")
47
  model = AutoModelForSequenceClassification.from_pretrained("codealchemist01/financial-sentiment-improved")
48
 
49
+ def predict_sentiment(text):
50
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
51
+
52
+ with torch.no_grad():
53
+ outputs = model(**inputs)
54
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
55
+
56
+ labels = ["Bearish", "Neutral", "Bullish"]
57
  predicted_class = torch.argmax(predictions, dim=-1).item()
58
+ confidence = predictions[0][predicted_class].item()
59
+
60
+ return {
61
+ "label": labels[predicted_class],
62
+ "confidence": confidence
63
+ }
64
+
65
+ # Example
66
+ result = predict_sentiment("The stock market is showing strong growth today")
67
+ print(result)
68
  ```
69
 
70
  ## Training Details
71
 
72
+ This model was trained using advanced techniques including:
73
+ - Balanced dataset sampling
74
+ - Custom loss functions
75
+ - Learning rate scheduling
76
+ - Early stopping
77
 
78
+ ## Intended Use
79
 
80
+ This model is designed for financial sentiment analysis tasks, including:
81
+ - Social media sentiment monitoring
82
+ - News sentiment analysis
83
+ - Market sentiment tracking
84
+ - Financial document analysis