Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model:
|
| 3 |
+
- princeton-nlp/Llama-3-8B-ProLong-512k-Instruct
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
datasets:
|
| 8 |
+
- chtmp223/CLIPPER
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# ProLong-512k-8B-CLIPPER
|
| 12 |
+
ProLong-512k-8B-CLIPPER is a fine-tuned version of princeton-nlp/Llama-3-8B-ProLong-512k-Instruct using supervised finetuning over chtmp223/CLIPPER dataset.
|
| 13 |
+
Please check [our paper](https://arxiv.org/abs/2502.14854) for more details on the method.
|
| 14 |
+
|
| 15 |
+
## 📒 Model Details
|
| 16 |
+
|
| 17 |
+
### Model Description
|
| 18 |
+
|
| 19 |
+
- **Language(s) (NLP):** English
|
| 20 |
+
- **License:** Apache-2.0
|
| 21 |
+
- **Finetuned from model:** princeton-nlp/Llama-3-8B-ProLong-512k-Instruct](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Instruct)
|
| 22 |
+
|
| 23 |
+
### Model Sources
|
| 24 |
+
|
| 25 |
+
- **Repository:** [Github repository](https://github.com/chtmp223/CLIPPER).
|
| 26 |
+
- **Paper:** [https://arxiv.org/abs/2502.14854](https://arxiv.org/abs/2502.14854)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
## 💻 Training Details
|
| 30 |
+
|
| 31 |
+
### Training Data
|
| 32 |
+
|
| 33 |
+
[chtmp223/CLIPPER](https://huggingface.co/datasets/chtmp223/CLIPPER)
|
| 34 |
+
|
| 35 |
+
### Training Procedure
|
| 36 |
+
|
| 37 |
+
| **Configurations** | **Values** |
|
| 38 |
+
|----------------------------------|--------------|
|
| 39 |
+
| Hardware (Training and Inference)| 8xA100s |
|
| 40 |
+
| Tracking | wandb |
|
| 41 |
+
| batch size | 16 |
|
| 42 |
+
| gradient_checkpointing | True |
|
| 43 |
+
| learning_rate | 1.0e-6 |
|
| 44 |
+
| lr_scheduler_type | cosine |
|
| 45 |
+
| max_length | 131072 |
|
| 46 |
+
| num_train_epochs | 1 |
|
| 47 |
+
| optim | adamw_torch |
|
| 48 |
+
|
| 49 |
+
#### Software
|
| 50 |
+
|
| 51 |
+
Training code is adapted from [https://github.com/princeton-nlp/ProLong](https://github.com/princeton-nlp/ProLong).
|
| 52 |
+
|
| 53 |
+
## 🤗 Inference
|
| 54 |
+
Inference is done with [vLLM](https://github.com/vllm-project/vllm) on 1 A100-80GB.
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
## 📜 Citation
|
| 58 |
+
|
| 59 |
+
```
|
| 60 |
+
@misc{pham2025clippercompressionenableslongcontext,
|
| 61 |
+
title={CLIPPER: Compression enables long-context synthetic data generation},
|
| 62 |
+
author={Chau Minh Pham and Yapei Chang and Mohit Iyyer},
|
| 63 |
+
year={2025},
|
| 64 |
+
eprint={2502.14854},
|
| 65 |
+
archivePrefix={arXiv},
|
| 66 |
+
primaryClass={cs.CL},
|
| 67 |
+
url={https://arxiv.org/abs/2502.14854},
|
| 68 |
+
}
|
| 69 |
+
```
|