bareethul commited on
Commit
839b8f0
·
verified ·
1 Parent(s): 91aafe9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -27,7 +27,7 @@ The task is to predict whether a book is **recommended to everyone** based on ta
27
  ## Model Details
28
 
29
  - **Developed by:** Bareethul Kader
30
- - **Framework:** AutoGluon (v1.1)
31
  - **Repository:** [bareethul/AutoML-books-classification](https://huggingface.co/bareethul/AutoML-books-classification)
32
  - **License:** CC BY 4.0
33
 
@@ -64,7 +64,7 @@ The task is to predict whether a book is **recommended to everyone** based on ta
64
 
65
  - **AutoML framework:** AutoGluon TabularPredictor
66
  - **Evaluation metric:** Accuracy
67
- - **Budget:** ~1 minute training time, small scale search
68
  - **Hardware:** Google Colab (T4 GPU not required, CPU sufficient)
69
  - **Search Space:**
70
  - Tree based models: LightGBM, XGBoost, ExtraTrees, RandomForest
@@ -79,13 +79,13 @@ The task is to predict whether a book is **recommended to everyone** based on ta
79
 
80
  | Rank | Model | Test Accuracy | Validation Accuracy |
81
  |------|---------------------------|---------------|----------------------|
82
- | 1 | RandomForestEntr_BAG_L1 | **0.55** | ~0.65 |
83
- | 2 | LightGBM_r96_BAG_L2 | 0.53 | ~0.72 |
84
- | 3 | LightGBMLarge_BAG_L2 | 0.53 | ~0.74 |
85
 
86
  - **Best model (AutoGluon selected):** `RandomForestEntr_BAG_L1`
87
  - **Test Accuracy:** ~0.55
88
- - **Validation Accuracy (best across runs):** up to ~0.75 (LightGBM variants)
89
 
90
  Note: The **“best model”** may vary depending on random splits and seeds.
91
  While AutoGluon reported `RandomForestEntr_BAG_L1` as best in this run, LightGBM models sometimes achieved higher validation accuracy but generalized less strongly.
 
27
  ## Model Details
28
 
29
  - **Developed by:** Bareethul Kader
30
+ - **Framework:** AutoGluon
31
  - **Repository:** [bareethul/AutoML-books-classification](https://huggingface.co/bareethul/AutoML-books-classification)
32
  - **License:** CC BY 4.0
33
 
 
64
 
65
  - **AutoML framework:** AutoGluon TabularPredictor
66
  - **Evaluation metric:** Accuracy
67
+ - **Budget:** 300 seconds training time, small scale search
68
  - **Hardware:** Google Colab (T4 GPU not required, CPU sufficient)
69
  - **Search Space:**
70
  - Tree based models: LightGBM, XGBoost, ExtraTrees, RandomForest
 
79
 
80
  | Rank | Model | Test Accuracy | Validation Accuracy |
81
  |------|---------------------------|---------------|----------------------|
82
+ | 1 | RandomForestEntr_BAG_L1 | **0.55** | 0.65 |
83
+ | 2 | LightGBM_r96_BAG_L2 | 0.53 | 0.72 |
84
+ | 3 | LightGBMLarge_BAG_L2 | 0.53 | 0.74 |
85
 
86
  - **Best model (AutoGluon selected):** `RandomForestEntr_BAG_L1`
87
  - **Test Accuracy:** ~0.55
88
+ - **Validation Accuracy (best across runs):** up to 0.75 (LightGBM variants)
89
 
90
  Note: The **“best model”** may vary depending on random splits and seeds.
91
  While AutoGluon reported `RandomForestEntr_BAG_L1` as best in this run, LightGBM models sometimes achieved higher validation accuracy but generalized less strongly.