new training -adding kywd Round
Browse files- dev.tsv +0 -0
- loss.tsv +8 -10
- pytorch_model.bin +1 -1
- test.tsv +0 -0
- training.log +160 -190
dev.tsv
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
loss.tsv
CHANGED
|
@@ -1,11 +1,9 @@
|
|
| 1 |
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
| 2 |
-
1
|
| 3 |
-
2
|
| 4 |
-
3
|
| 5 |
-
4
|
| 6 |
-
5
|
| 7 |
-
6
|
| 8 |
-
7
|
| 9 |
-
8
|
| 10 |
-
9 15:57:02 1 0.0001 0.11015787282151847 0.0028099738992750645 0.9994 0.9994 0.9994 0.9994
|
| 11 |
-
10 15:59:31 2 0.0001 0.1096125644685161 0.004609304014593363 0.9993 0.9993 0.9993 0.9993
|
|
|
|
| 1 |
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
| 2 |
+
1 23:24:06 0 0.0001 0.15910741661981953 0.002542673610150814 0.9992 0.9992 0.9992 0.9992
|
| 3 |
+
2 23:26:34 1 0.0001 0.10975106787141815 0.0029088123701512814 0.999 0.9987 0.9988 0.9982
|
| 4 |
+
3 23:29:04 0 0.0001 0.11048393350363928 0.0013118594652041793 0.9994 0.9994 0.9994 0.9994
|
| 5 |
+
4 23:31:36 1 0.0001 0.10981345410208285 0.0019321050494909286 0.999 0.999 0.999 0.999
|
| 6 |
+
5 23:34:08 2 0.0001 0.10924844648041492 0.001400615437887609 0.9994 0.9994 0.9994 0.9994
|
| 7 |
+
6 23:36:40 3 0.0001 0.1091850148535769 0.0009049061918631196 0.9992 0.9992 0.9992 0.9992
|
| 8 |
+
7 23:39:11 0 0.0001 0.10964141851766264 0.0013050935231149197 0.9995 0.9995 0.9995 0.9995
|
| 9 |
+
8 23:41:51 1 0.0001 0.10978477235306694 0.0015213226433843374 0.9993 0.9993 0.9993 0.9993
|
|
|
|
|
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 338076137
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b47b1a70fbce46c117cb375ddc66671d4330395d9ad124bfa79a5596086f4cd1
|
| 3 |
size 338076137
|
test.tsv
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
training.log
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
2021-11-17
|
| 2 |
-
2021-11-17
|
| 3 |
(embeddings): TransformerWordEmbeddings(
|
| 4 |
(model): RobertaModel(
|
| 5 |
(embeddings): RobertaEmbeddings(
|
|
@@ -165,200 +165,170 @@
|
|
| 165 |
(weights): None
|
| 166 |
(weight_tensor) None
|
| 167 |
)"
|
| 168 |
-
2021-11-17
|
| 169 |
-
2021-11-17
|
| 170 |
-
2021-11-17
|
| 171 |
-
2021-11-17
|
| 172 |
-
2021-11-17
|
| 173 |
-
2021-11-17
|
| 174 |
-
2021-11-17
|
| 175 |
-
2021-11-17
|
| 176 |
-
2021-11-17
|
| 177 |
-
2021-11-17
|
| 178 |
-
2021-11-17
|
| 179 |
-
2021-11-17
|
| 180 |
-
2021-11-17
|
| 181 |
-
2021-11-17
|
| 182 |
-
2021-11-17
|
| 183 |
-
2021-11-17
|
| 184 |
-
2021-11-17
|
| 185 |
-
2021-11-17
|
| 186 |
-
2021-11-17
|
| 187 |
-
2021-11-17
|
| 188 |
-
2021-11-17
|
| 189 |
-
2021-11-17
|
| 190 |
-
2021-11-17
|
| 191 |
-
2021-11-17
|
| 192 |
-
2021-11-17
|
| 193 |
-
2021-11-17
|
| 194 |
-
2021-11-17
|
| 195 |
-
2021-11-17
|
| 196 |
-
2021-11-17
|
| 197 |
-
2021-11-17
|
| 198 |
-
2021-11-17
|
| 199 |
-
2021-11-17
|
| 200 |
-
2021-11-17
|
| 201 |
-
2021-11-17
|
| 202 |
-
2021-11-17
|
| 203 |
-
2021-11-17
|
| 204 |
-
2021-11-17
|
| 205 |
-
2021-11-17
|
| 206 |
-
2021-11-17
|
| 207 |
-
2021-11-17
|
| 208 |
-
2021-11-17
|
| 209 |
-
2021-11-17
|
| 210 |
-
2021-11-17
|
| 211 |
-
2021-11-17
|
| 212 |
-
2021-11-17
|
| 213 |
-
2021-11-17
|
| 214 |
-
2021-11-17
|
| 215 |
-
2021-11-17
|
| 216 |
-
2021-11-17
|
| 217 |
-
2021-11-17
|
| 218 |
-
2021-11-17
|
| 219 |
-
2021-11-17
|
| 220 |
-
2021-11-17
|
| 221 |
-
2021-11-17
|
| 222 |
-
2021-11-17
|
| 223 |
-
2021-11-17
|
| 224 |
-
2021-11-17
|
| 225 |
-
2021-11-17
|
| 226 |
-
2021-11-17
|
| 227 |
-
2021-11-17
|
| 228 |
-
2021-11-17
|
| 229 |
-
2021-11-17
|
| 230 |
-
2021-11-17
|
| 231 |
-
2021-11-17
|
| 232 |
-
2021-11-17
|
| 233 |
-
2021-11-17
|
| 234 |
-
2021-11-17
|
| 235 |
-
2021-11-17
|
| 236 |
-
2021-11-17
|
| 237 |
-
2021-11-17
|
| 238 |
-
2021-11-17
|
| 239 |
-
2021-11-17
|
| 240 |
-
2021-11-17
|
| 241 |
-
2021-11-17
|
| 242 |
-
2021-11-17
|
| 243 |
-
2021-11-17
|
| 244 |
-
2021-11-17
|
| 245 |
-
2021-11-17
|
| 246 |
-
2021-11-17
|
| 247 |
-
2021-11-17
|
| 248 |
-
2021-11-17
|
| 249 |
-
2021-11-17
|
| 250 |
-
2021-11-17
|
| 251 |
-
2021-11-17
|
| 252 |
-
2021-11-17
|
| 253 |
-
2021-11-17
|
| 254 |
-
2021-11-17
|
| 255 |
-
2021-11-17
|
| 256 |
-
2021-11-17
|
| 257 |
-
2021-11-17
|
| 258 |
-
2021-11-17
|
| 259 |
-
2021-11-17
|
| 260 |
-
2021-11-17
|
| 261 |
-
2021-11-17
|
| 262 |
-
2021-11-17
|
| 263 |
-
2021-11-17
|
| 264 |
-
2021-11-17
|
| 265 |
-
2021-11-17
|
| 266 |
-
2021-11-17
|
| 267 |
-
2021-11-17
|
| 268 |
-
2021-11-17
|
| 269 |
-
2021-11-17
|
| 270 |
-
2021-11-17
|
| 271 |
-
2021-11-17
|
| 272 |
-
2021-11-17
|
| 273 |
-
2021-11-17
|
| 274 |
-
2021-11-17
|
| 275 |
-
2021-11-17
|
| 276 |
-
2021-11-17
|
| 277 |
-
2021-11-17
|
| 278 |
-
2021-11-17
|
| 279 |
-
2021-11-17
|
| 280 |
-
2021-11-17
|
| 281 |
-
2021-11-17
|
| 282 |
-
2021-11-17
|
| 283 |
-
2021-11-17
|
| 284 |
-
2021-11-17
|
| 285 |
-
2021-11-17
|
| 286 |
-
2021-11-17
|
| 287 |
-
2021-11-17
|
| 288 |
-
2021-11-17
|
| 289 |
-
2021-11-17
|
| 290 |
-
2021-11-17
|
| 291 |
-
2021-11-17
|
| 292 |
-
2021-11-17
|
| 293 |
-
2021-11-17
|
| 294 |
-
2021-11-17
|
| 295 |
-
2021-11-17
|
| 296 |
-
2021-11-17
|
| 297 |
-
2021-11-17
|
| 298 |
-
2021-11-17
|
| 299 |
-
2021-11-17
|
| 300 |
-
2021-11-17
|
| 301 |
-
2021-11-17
|
| 302 |
-
2021-11-17
|
| 303 |
-
2021-11-17
|
| 304 |
-
2021-11-17
|
| 305 |
-
2021-11-17
|
| 306 |
-
2021-11-17
|
| 307 |
-
2021-11-17
|
| 308 |
-
2021-11-17
|
| 309 |
-
2021-11-17
|
| 310 |
-
2021-11-17
|
| 311 |
-
2021-11-17
|
| 312 |
-
2021-11-17
|
| 313 |
-
2021-11-17 15:55:26,289 epoch 9 - iter 352/886 - loss 0.11113663 - samples/sec: 429.99 - lr: 0.000050
|
| 314 |
-
2021-11-17 15:55:40,047 epoch 9 - iter 440/886 - loss 0.11075153 - samples/sec: 409.63 - lr: 0.000050
|
| 315 |
-
2021-11-17 15:55:53,772 epoch 9 - iter 528/886 - loss 0.11070955 - samples/sec: 410.63 - lr: 0.000050
|
| 316 |
-
2021-11-17 15:56:07,050 epoch 9 - iter 616/886 - loss 0.11027549 - samples/sec: 424.44 - lr: 0.000050
|
| 317 |
-
2021-11-17 15:56:20,322 epoch 9 - iter 704/886 - loss 0.11003220 - samples/sec: 424.64 - lr: 0.000050
|
| 318 |
-
2021-11-17 15:56:33,497 epoch 9 - iter 792/886 - loss 0.10976900 - samples/sec: 427.78 - lr: 0.000050
|
| 319 |
-
2021-11-17 15:56:46,751 epoch 9 - iter 880/886 - loss 0.11015739 - samples/sec: 425.22 - lr: 0.000050
|
| 320 |
-
2021-11-17 15:56:47,659 ----------------------------------------------------------------------------------------------------
|
| 321 |
-
2021-11-17 15:56:47,660 EPOCH 9 done: loss 0.1102 - lr 0.0000500
|
| 322 |
-
2021-11-17 15:57:02,117 DEV : loss 0.0028099738992750645 - f1-score (micro avg) 0.9994
|
| 323 |
-
2021-11-17 15:57:02,205 BAD EPOCHS (no improvement): 1
|
| 324 |
-
2021-11-17 15:57:02,206 ----------------------------------------------------------------------------------------------------
|
| 325 |
-
2021-11-17 15:57:15,740 epoch 10 - iter 88/886 - loss 0.11323596 - samples/sec: 416.50 - lr: 0.000050
|
| 326 |
-
2021-11-17 15:57:28,942 epoch 10 - iter 176/886 - loss 0.11324876 - samples/sec: 426.89 - lr: 0.000050
|
| 327 |
-
2021-11-17 15:57:42,141 epoch 10 - iter 264/886 - loss 0.11189004 - samples/sec: 426.98 - lr: 0.000050
|
| 328 |
-
2021-11-17 15:57:55,416 epoch 10 - iter 352/886 - loss 0.11062028 - samples/sec: 424.72 - lr: 0.000050
|
| 329 |
-
2021-11-17 15:58:08,673 epoch 10 - iter 440/886 - loss 0.10959000 - samples/sec: 425.11 - lr: 0.000050
|
| 330 |
-
2021-11-17 15:58:21,918 epoch 10 - iter 528/886 - loss 0.10964689 - samples/sec: 425.52 - lr: 0.000050
|
| 331 |
-
2021-11-17 15:58:35,102 epoch 10 - iter 616/886 - loss 0.11011373 - samples/sec: 427.66 - lr: 0.000050
|
| 332 |
-
2021-11-17 15:58:48,156 epoch 10 - iter 704/886 - loss 0.10975773 - samples/sec: 431.74 - lr: 0.000050
|
| 333 |
-
2021-11-17 15:59:01,225 epoch 10 - iter 792/886 - loss 0.10955614 - samples/sec: 431.43 - lr: 0.000050
|
| 334 |
-
2021-11-17 15:59:14,205 epoch 10 - iter 880/886 - loss 0.10966756 - samples/sec: 434.19 - lr: 0.000050
|
| 335 |
-
2021-11-17 15:59:15,113 ----------------------------------------------------------------------------------------------------
|
| 336 |
-
2021-11-17 15:59:15,114 EPOCH 10 done: loss 0.1096 - lr 0.0000500
|
| 337 |
-
2021-11-17 15:59:30,962 DEV : loss 0.004609304014593363 - f1-score (micro avg) 0.9993
|
| 338 |
-
2021-11-17 15:59:31,047 BAD EPOCHS (no improvement): 2
|
| 339 |
-
2021-11-17 15:59:31,418 ----------------------------------------------------------------------------------------------------
|
| 340 |
-
2021-11-17 15:59:31,419 loading file training/flair_ner/17112021_152905/best-model.pt
|
| 341 |
-
2021-11-17 15:59:49,424 0.9993 0.9993 0.9993 0.9993
|
| 342 |
-
2021-11-17 15:59:49,425
|
| 343 |
Results:
|
| 344 |
- F-score (micro) 0.9993
|
| 345 |
-
- F-score (macro) 0.
|
| 346 |
- Accuracy 0.9993
|
| 347 |
|
| 348 |
By class:
|
| 349 |
precision recall f1-score support
|
| 350 |
|
| 351 |
-
nb_rounds 0.
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
duration_wt_min 1.0000 1.0000 1.0000
|
| 355 |
-
duration_br_sd 0.
|
| 356 |
-
duration_wt_hr 1.0000 1.0000 1.0000
|
| 357 |
-
duration_br_hr 0.
|
| 358 |
|
| 359 |
-
micro avg 0.9993 0.9993 0.9993
|
| 360 |
-
macro avg 0.
|
| 361 |
-
weighted avg 0.9993 0.9993 0.9993
|
| 362 |
-
samples avg 0.9993 0.9993 0.9993
|
| 363 |
|
| 364 |
-
2021-11-17
|
|
|
|
| 1 |
+
2021-11-17 23:21:43,874 ----------------------------------------------------------------------------------------------------
|
| 2 |
+
2021-11-17 23:21:43,875 Model: "SequenceTagger(
|
| 3 |
(embeddings): TransformerWordEmbeddings(
|
| 4 |
(model): RobertaModel(
|
| 5 |
(embeddings): RobertaEmbeddings(
|
|
|
|
| 165 |
(weights): None
|
| 166 |
(weight_tensor) None
|
| 167 |
)"
|
| 168 |
+
2021-11-17 23:21:43,876 ----------------------------------------------------------------------------------------------------
|
| 169 |
+
2021-11-17 23:21:43,877 Corpus: "Corpus: 56700 train + 6300 dev + 7000 test sentences"
|
| 170 |
+
2021-11-17 23:21:43,877 ----------------------------------------------------------------------------------------------------
|
| 171 |
+
2021-11-17 23:21:43,878 Parameters:
|
| 172 |
+
2021-11-17 23:21:43,878 - learning_rate: "5e-05"
|
| 173 |
+
2021-11-17 23:21:43,879 - mini_batch_size: "64"
|
| 174 |
+
2021-11-17 23:21:43,879 - patience: "3"
|
| 175 |
+
2021-11-17 23:21:43,879 - anneal_factor: "0.5"
|
| 176 |
+
2021-11-17 23:21:43,880 - max_epochs: "8"
|
| 177 |
+
2021-11-17 23:21:43,881 - shuffle: "True"
|
| 178 |
+
2021-11-17 23:21:43,881 - train_with_dev: "False"
|
| 179 |
+
2021-11-17 23:21:43,882 - batch_growth_annealing: "False"
|
| 180 |
+
2021-11-17 23:21:43,882 ----------------------------------------------------------------------------------------------------
|
| 181 |
+
2021-11-17 23:21:43,883 Model training base path: "training/flair_ner/en/17112021_231902"
|
| 182 |
+
2021-11-17 23:21:43,883 ----------------------------------------------------------------------------------------------------
|
| 183 |
+
2021-11-17 23:21:43,884 Device: cuda
|
| 184 |
+
2021-11-17 23:21:43,885 ----------------------------------------------------------------------------------------------------
|
| 185 |
+
2021-11-17 23:21:43,885 Embeddings storage mode: cpu
|
| 186 |
+
2021-11-17 23:21:43,886 ----------------------------------------------------------------------------------------------------
|
| 187 |
+
2021-11-17 23:21:57,350 epoch 1 - iter 88/886 - loss 0.50060718 - samples/sec: 418.55 - lr: 0.000050
|
| 188 |
+
2021-11-17 23:22:10,500 epoch 1 - iter 176/886 - loss 0.32189657 - samples/sec: 428.58 - lr: 0.000050
|
| 189 |
+
2021-11-17 23:22:23,215 epoch 1 - iter 264/886 - loss 0.25798771 - samples/sec: 443.41 - lr: 0.000050
|
| 190 |
+
2021-11-17 23:22:35,888 epoch 1 - iter 352/886 - loss 0.22669943 - samples/sec: 444.82 - lr: 0.000050
|
| 191 |
+
2021-11-17 23:22:48,672 epoch 1 - iter 440/886 - loss 0.20548598 - samples/sec: 440.79 - lr: 0.000050
|
| 192 |
+
2021-11-17 23:23:01,458 epoch 1 - iter 528/886 - loss 0.19096343 - samples/sec: 440.79 - lr: 0.000050
|
| 193 |
+
2021-11-17 23:23:14,258 epoch 1 - iter 616/886 - loss 0.18023473 - samples/sec: 440.24 - lr: 0.000050
|
| 194 |
+
2021-11-17 23:23:27,118 epoch 1 - iter 704/886 - loss 0.17198943 - samples/sec: 438.19 - lr: 0.000050
|
| 195 |
+
2021-11-17 23:23:39,791 epoch 1 - iter 792/886 - loss 0.16499517 - samples/sec: 444.63 - lr: 0.000050
|
| 196 |
+
2021-11-17 23:23:52,506 epoch 1 - iter 880/886 - loss 0.15942326 - samples/sec: 443.19 - lr: 0.000050
|
| 197 |
+
2021-11-17 23:23:53,362 ----------------------------------------------------------------------------------------------------
|
| 198 |
+
2021-11-17 23:23:53,363 EPOCH 1 done: loss 0.1591 - lr 0.0000500
|
| 199 |
+
2021-11-17 23:24:06,817 DEV : loss 0.002542673610150814 - f1-score (micro avg) 0.9992
|
| 200 |
+
2021-11-17 23:24:06,902 BAD EPOCHS (no improvement): 0
|
| 201 |
+
2021-11-17 23:24:06,903 saving best model
|
| 202 |
+
2021-11-17 23:24:07,239 ----------------------------------------------------------------------------------------------------
|
| 203 |
+
2021-11-17 23:24:20,356 epoch 2 - iter 88/886 - loss 0.11000766 - samples/sec: 429.70 - lr: 0.000050
|
| 204 |
+
2021-11-17 23:24:33,380 epoch 2 - iter 176/886 - loss 0.10909856 - samples/sec: 432.73 - lr: 0.000050
|
| 205 |
+
2021-11-17 23:24:46,404 epoch 2 - iter 264/886 - loss 0.10926820 - samples/sec: 432.72 - lr: 0.000050
|
| 206 |
+
2021-11-17 23:24:59,233 epoch 2 - iter 352/886 - loss 0.10950969 - samples/sec: 439.32 - lr: 0.000050
|
| 207 |
+
2021-11-17 23:25:12,123 epoch 2 - iter 440/886 - loss 0.11018886 - samples/sec: 437.23 - lr: 0.000050
|
| 208 |
+
2021-11-17 23:25:25,126 epoch 2 - iter 528/886 - loss 0.10995752 - samples/sec: 433.43 - lr: 0.000050
|
| 209 |
+
2021-11-17 23:25:38,072 epoch 2 - iter 616/886 - loss 0.10983300 - samples/sec: 435.34 - lr: 0.000050
|
| 210 |
+
2021-11-17 23:25:51,102 epoch 2 - iter 704/886 - loss 0.10978674 - samples/sec: 432.51 - lr: 0.000050
|
| 211 |
+
2021-11-17 23:26:05,660 epoch 2 - iter 792/886 - loss 0.10974621 - samples/sec: 387.25 - lr: 0.000050
|
| 212 |
+
2021-11-17 23:26:19,108 epoch 2 - iter 880/886 - loss 0.10964924 - samples/sec: 419.09 - lr: 0.000050
|
| 213 |
+
2021-11-17 23:26:20,019 ----------------------------------------------------------------------------------------------------
|
| 214 |
+
2021-11-17 23:26:20,020 EPOCH 2 done: loss 0.1098 - lr 0.0000500
|
| 215 |
+
2021-11-17 23:26:34,470 DEV : loss 0.0029088123701512814 - f1-score (micro avg) 0.9988
|
| 216 |
+
2021-11-17 23:26:34,553 BAD EPOCHS (no improvement): 1
|
| 217 |
+
2021-11-17 23:26:34,553 ----------------------------------------------------------------------------------------------------
|
| 218 |
+
2021-11-17 23:26:47,966 epoch 3 - iter 88/886 - loss 0.11118611 - samples/sec: 420.23 - lr: 0.000050
|
| 219 |
+
2021-11-17 23:27:01,224 epoch 3 - iter 176/886 - loss 0.11113361 - samples/sec: 425.09 - lr: 0.000050
|
| 220 |
+
2021-11-17 23:27:14,454 epoch 3 - iter 264/886 - loss 0.11038604 - samples/sec: 426.17 - lr: 0.000050
|
| 221 |
+
2021-11-17 23:27:27,741 epoch 3 - iter 352/886 - loss 0.11138497 - samples/sec: 424.34 - lr: 0.000050
|
| 222 |
+
2021-11-17 23:27:40,811 epoch 3 - iter 440/886 - loss 0.11143778 - samples/sec: 431.20 - lr: 0.000050
|
| 223 |
+
2021-11-17 23:27:54,062 epoch 3 - iter 528/886 - loss 0.11093105 - samples/sec: 425.34 - lr: 0.000050
|
| 224 |
+
2021-11-17 23:28:07,198 epoch 3 - iter 616/886 - loss 0.11050488 - samples/sec: 429.21 - lr: 0.000050
|
| 225 |
+
2021-11-17 23:28:20,418 epoch 3 - iter 704/886 - loss 0.11064153 - samples/sec: 426.32 - lr: 0.000050
|
| 226 |
+
2021-11-17 23:28:33,690 epoch 3 - iter 792/886 - loss 0.11022304 - samples/sec: 424.79 - lr: 0.000050
|
| 227 |
+
2021-11-17 23:28:47,015 epoch 3 - iter 880/886 - loss 0.11054611 - samples/sec: 422.95 - lr: 0.000050
|
| 228 |
+
2021-11-17 23:28:47,991 ----------------------------------------------------------------------------------------------------
|
| 229 |
+
2021-11-17 23:28:47,992 EPOCH 3 done: loss 0.1105 - lr 0.0000500
|
| 230 |
+
2021-11-17 23:29:04,469 DEV : loss 0.0013118594652041793 - f1-score (micro avg) 0.9994
|
| 231 |
+
2021-11-17 23:29:04,549 BAD EPOCHS (no improvement): 0
|
| 232 |
+
2021-11-17 23:29:04,550 saving best model
|
| 233 |
+
2021-11-17 23:29:05,206 ----------------------------------------------------------------------------------------------------
|
| 234 |
+
2021-11-17 23:29:19,255 epoch 4 - iter 88/886 - loss 0.11101590 - samples/sec: 401.22 - lr: 0.000050
|
| 235 |
+
2021-11-17 23:29:33,081 epoch 4 - iter 176/886 - loss 0.10997834 - samples/sec: 407.62 - lr: 0.000050
|
| 236 |
+
2021-11-17 23:29:46,787 epoch 4 - iter 264/886 - loss 0.11031061 - samples/sec: 411.18 - lr: 0.000050
|
| 237 |
+
2021-11-17 23:30:00,054 epoch 4 - iter 352/886 - loss 0.10969025 - samples/sec: 424.81 - lr: 0.000050
|
| 238 |
+
2021-11-17 23:30:13,298 epoch 4 - iter 440/886 - loss 0.11001565 - samples/sec: 425.52 - lr: 0.000050
|
| 239 |
+
2021-11-17 23:30:26,545 epoch 4 - iter 528/886 - loss 0.11013209 - samples/sec: 425.45 - lr: 0.000050
|
| 240 |
+
2021-11-17 23:30:39,776 epoch 4 - iter 616/886 - loss 0.10980630 - samples/sec: 425.95 - lr: 0.000050
|
| 241 |
+
2021-11-17 23:30:52,924 epoch 4 - iter 704/886 - loss 0.10947482 - samples/sec: 428.65 - lr: 0.000050
|
| 242 |
+
2021-11-17 23:31:06,186 epoch 4 - iter 792/886 - loss 0.10976788 - samples/sec: 424.94 - lr: 0.000050
|
| 243 |
+
2021-11-17 23:31:19,571 epoch 4 - iter 880/886 - loss 0.10976014 - samples/sec: 421.06 - lr: 0.000050
|
| 244 |
+
2021-11-17 23:31:20,467 ----------------------------------------------------------------------------------------------------
|
| 245 |
+
2021-11-17 23:31:20,468 EPOCH 4 done: loss 0.1098 - lr 0.0000500
|
| 246 |
+
2021-11-17 23:31:36,227 DEV : loss 0.0019321050494909286 - f1-score (micro avg) 0.999
|
| 247 |
+
2021-11-17 23:31:36,311 BAD EPOCHS (no improvement): 1
|
| 248 |
+
2021-11-17 23:31:36,312 ----------------------------------------------------------------------------------------------------
|
| 249 |
+
2021-11-17 23:31:49,776 epoch 5 - iter 88/886 - loss 0.11196203 - samples/sec: 418.62 - lr: 0.000050
|
| 250 |
+
2021-11-17 23:32:03,347 epoch 5 - iter 176/886 - loss 0.11146165 - samples/sec: 415.27 - lr: 0.000050
|
| 251 |
+
2021-11-17 23:32:16,869 epoch 5 - iter 264/886 - loss 0.11038997 - samples/sec: 416.80 - lr: 0.000050
|
| 252 |
+
2021-11-17 23:32:30,210 epoch 5 - iter 352/886 - loss 0.10969957 - samples/sec: 422.45 - lr: 0.000050
|
| 253 |
+
2021-11-17 23:32:43,385 epoch 5 - iter 440/886 - loss 0.10883622 - samples/sec: 427.75 - lr: 0.000050
|
| 254 |
+
2021-11-17 23:32:57,014 epoch 5 - iter 528/886 - loss 0.10885199 - samples/sec: 413.52 - lr: 0.000050
|
| 255 |
+
2021-11-17 23:33:11,225 epoch 5 - iter 616/886 - loss 0.10919470 - samples/sec: 396.74 - lr: 0.000050
|
| 256 |
+
2021-11-17 23:33:25,329 epoch 5 - iter 704/886 - loss 0.10968561 - samples/sec: 399.65 - lr: 0.000050
|
| 257 |
+
2021-11-17 23:33:38,569 epoch 5 - iter 792/886 - loss 0.10952831 - samples/sec: 425.68 - lr: 0.000050
|
| 258 |
+
2021-11-17 23:33:51,869 epoch 5 - iter 880/886 - loss 0.10925988 - samples/sec: 423.91 - lr: 0.000050
|
| 259 |
+
2021-11-17 23:33:52,767 ----------------------------------------------------------------------------------------------------
|
| 260 |
+
2021-11-17 23:33:52,768 EPOCH 5 done: loss 0.1092 - lr 0.0000500
|
| 261 |
+
2021-11-17 23:34:08,633 DEV : loss 0.001400615437887609 - f1-score (micro avg) 0.9994
|
| 262 |
+
2021-11-17 23:34:08,713 BAD EPOCHS (no improvement): 2
|
| 263 |
+
2021-11-17 23:34:08,716 ----------------------------------------------------------------------------------------------------
|
| 264 |
+
2021-11-17 23:34:22,104 epoch 6 - iter 88/886 - loss 0.10971184 - samples/sec: 421.02 - lr: 0.000050
|
| 265 |
+
2021-11-17 23:34:35,452 epoch 6 - iter 176/886 - loss 0.10810577 - samples/sec: 422.40 - lr: 0.000050
|
| 266 |
+
2021-11-17 23:34:48,789 epoch 6 - iter 264/886 - loss 0.10923295 - samples/sec: 422.58 - lr: 0.000050
|
| 267 |
+
2021-11-17 23:35:02,187 epoch 6 - iter 352/886 - loss 0.10832324 - samples/sec: 420.62 - lr: 0.000050
|
| 268 |
+
2021-11-17 23:35:15,501 epoch 6 - iter 440/886 - loss 0.10890621 - samples/sec: 423.47 - lr: 0.000050
|
| 269 |
+
2021-11-17 23:35:28,932 epoch 6 - iter 528/886 - loss 0.10836666 - samples/sec: 419.60 - lr: 0.000050
|
| 270 |
+
2021-11-17 23:35:42,421 epoch 6 - iter 616/886 - loss 0.10866986 - samples/sec: 417.83 - lr: 0.000050
|
| 271 |
+
2021-11-17 23:35:56,321 epoch 6 - iter 704/886 - loss 0.10845591 - samples/sec: 405.45 - lr: 0.000050
|
| 272 |
+
2021-11-17 23:36:10,189 epoch 6 - iter 792/886 - loss 0.10875052 - samples/sec: 406.44 - lr: 0.000050
|
| 273 |
+
2021-11-17 23:36:23,804 epoch 6 - iter 880/886 - loss 0.10904969 - samples/sec: 413.93 - lr: 0.000050
|
| 274 |
+
2021-11-17 23:36:24,703 ----------------------------------------------------------------------------------------------------
|
| 275 |
+
2021-11-17 23:36:24,704 EPOCH 6 done: loss 0.1092 - lr 0.0000500
|
| 276 |
+
2021-11-17 23:36:40,380 DEV : loss 0.0009049061918631196 - f1-score (micro avg) 0.9992
|
| 277 |
+
2021-11-17 23:36:40,463 BAD EPOCHS (no improvement): 3
|
| 278 |
+
2021-11-17 23:36:40,463 ----------------------------------------------------------------------------------------------------
|
| 279 |
+
2021-11-17 23:36:54,014 epoch 7 - iter 88/886 - loss 0.11094486 - samples/sec: 415.95 - lr: 0.000050
|
| 280 |
+
2021-11-17 23:37:07,422 epoch 7 - iter 176/886 - loss 0.10949810 - samples/sec: 420.52 - lr: 0.000050
|
| 281 |
+
2021-11-17 23:37:21,230 epoch 7 - iter 264/886 - loss 0.10970254 - samples/sec: 408.14 - lr: 0.000050
|
| 282 |
+
2021-11-17 23:37:34,444 epoch 7 - iter 352/886 - loss 0.11019445 - samples/sec: 426.59 - lr: 0.000050
|
| 283 |
+
2021-11-17 23:37:47,833 epoch 7 - iter 440/886 - loss 0.11044571 - samples/sec: 420.94 - lr: 0.000050
|
| 284 |
+
2021-11-17 23:38:01,118 epoch 7 - iter 528/886 - loss 0.11022272 - samples/sec: 424.19 - lr: 0.000050
|
| 285 |
+
2021-11-17 23:38:14,537 epoch 7 - iter 616/886 - loss 0.10975761 - samples/sec: 420.00 - lr: 0.000050
|
| 286 |
+
2021-11-17 23:38:27,909 epoch 7 - iter 704/886 - loss 0.10944174 - samples/sec: 421.63 - lr: 0.000050
|
| 287 |
+
2021-11-17 23:38:41,133 epoch 7 - iter 792/886 - loss 0.10960931 - samples/sec: 426.17 - lr: 0.000050
|
| 288 |
+
2021-11-17 23:38:54,481 epoch 7 - iter 880/886 - loss 0.10960868 - samples/sec: 422.22 - lr: 0.000050
|
| 289 |
+
2021-11-17 23:38:55,367 ----------------------------------------------------------------------------------------------------
|
| 290 |
+
2021-11-17 23:38:55,368 EPOCH 7 done: loss 0.1096 - lr 0.0000500
|
| 291 |
+
2021-11-17 23:39:11,689 DEV : loss 0.0013050935231149197 - f1-score (micro avg) 0.9995
|
| 292 |
+
2021-11-17 23:39:11,770 BAD EPOCHS (no improvement): 0
|
| 293 |
+
2021-11-17 23:39:11,773 saving best model
|
| 294 |
+
2021-11-17 23:39:12,423 ----------------------------------------------------------------------------------------------------
|
| 295 |
+
2021-11-17 23:39:26,468 epoch 8 - iter 88/886 - loss 0.11104233 - samples/sec: 401.32 - lr: 0.000050
|
| 296 |
+
2021-11-17 23:39:40,269 epoch 8 - iter 176/886 - loss 0.11088406 - samples/sec: 408.36 - lr: 0.000050
|
| 297 |
+
2021-11-17 23:39:53,968 epoch 8 - iter 264/886 - loss 0.11062941 - samples/sec: 411.41 - lr: 0.000050
|
| 298 |
+
2021-11-17 23:40:07,630 epoch 8 - iter 352/886 - loss 0.11052519 - samples/sec: 412.67 - lr: 0.000050
|
| 299 |
+
2021-11-17 23:40:21,700 epoch 8 - iter 440/886 - loss 0.10981883 - samples/sec: 400.57 - lr: 0.000050
|
| 300 |
+
2021-11-17 23:40:35,699 epoch 8 - iter 528/886 - loss 0.10959840 - samples/sec: 402.57 - lr: 0.000050
|
| 301 |
+
2021-11-17 23:40:49,510 epoch 8 - iter 616/886 - loss 0.10968087 - samples/sec: 408.23 - lr: 0.000050
|
| 302 |
+
2021-11-17 23:41:03,430 epoch 8 - iter 704/886 - loss 0.10975513 - samples/sec: 404.86 - lr: 0.000050
|
| 303 |
+
2021-11-17 23:41:17,719 epoch 8 - iter 792/886 - loss 0.10979006 - samples/sec: 394.41 - lr: 0.000050
|
| 304 |
+
2021-11-17 23:41:32,411 epoch 8 - iter 880/886 - loss 0.10979431 - samples/sec: 383.61 - lr: 0.000050
|
| 305 |
+
2021-11-17 23:41:33,357 ----------------------------------------------------------------------------------------------------
|
| 306 |
+
2021-11-17 23:41:33,358 EPOCH 8 done: loss 0.1098 - lr 0.0000500
|
| 307 |
+
2021-11-17 23:41:50,962 DEV : loss 0.0015213226433843374 - f1-score (micro avg) 0.9993
|
| 308 |
+
2021-11-17 23:41:51,053 BAD EPOCHS (no improvement): 1
|
| 309 |
+
2021-11-17 23:41:51,466 ----------------------------------------------------------------------------------------------------
|
| 310 |
+
2021-11-17 23:41:51,467 loading file training/flair_ner/en/17112021_231902/best-model.pt
|
| 311 |
+
2021-11-17 23:42:09,058 0.9993 0.9993 0.9993 0.9993
|
| 312 |
+
2021-11-17 23:42:09,064
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
Results:
|
| 314 |
- F-score (micro) 0.9993
|
| 315 |
+
- F-score (macro) 0.9992
|
| 316 |
- Accuracy 0.9993
|
| 317 |
|
| 318 |
By class:
|
| 319 |
precision recall f1-score support
|
| 320 |
|
| 321 |
+
nb_rounds 0.9999 0.9981 0.9990 6889
|
| 322 |
+
duration_wt_sd 1.0000 1.0000 1.0000 3292
|
| 323 |
+
duration_br_min 0.9975 1.0000 0.9988 3239
|
| 324 |
+
duration_wt_min 1.0000 1.0000 1.0000 2685
|
| 325 |
+
duration_br_sd 0.9981 0.9995 0.9988 2068
|
| 326 |
+
duration_wt_hr 1.0000 1.0000 1.0000 1023
|
| 327 |
+
duration_br_hr 0.9957 1.0000 0.9978 230
|
| 328 |
|
| 329 |
+
micro avg 0.9993 0.9993 0.9993 19426
|
| 330 |
+
macro avg 0.9987 0.9997 0.9992 19426
|
| 331 |
+
weighted avg 0.9993 0.9993 0.9993 19426
|
| 332 |
+
samples avg 0.9993 0.9993 0.9993 19426
|
| 333 |
|
| 334 |
+
2021-11-17 23:42:09,065 ----------------------------------------------------------------------------------------------------
|