| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						""" PyTorch Jamba model.""" | 
					
					
						
						| 
							 | 
						import inspect | 
					
					
						
						| 
							 | 
						import math | 
					
					
						
						| 
							 | 
						import warnings | 
					
					
						
						| 
							 | 
						from dataclasses import dataclass, field | 
					
					
						
						| 
							 | 
						from typing import Any, Dict, List, Optional, Tuple, Union | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.nn.functional as F | 
					
					
						
						| 
							 | 
						import torch.utils.checkpoint | 
					
					
						
						| 
							 | 
						from torch import nn | 
					
					
						
						| 
							 | 
						from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers.activations import ACT2FN | 
					
					
						
						| 
							 | 
						from transformers.cache_utils import Cache, DynamicCache | 
					
					
						
						| 
							 | 
						from transformers.modeling_attn_mask_utils import ( | 
					
					
						
						| 
							 | 
						    _prepare_4d_causal_attention_mask, | 
					
					
						
						| 
							 | 
						    _prepare_4d_causal_attention_mask_for_sdpa, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.modeling_outputs import ( | 
					
					
						
						| 
							 | 
						    MoeCausalLMOutputWithPast, | 
					
					
						
						| 
							 | 
						    MoeModelOutputWithPast, | 
					
					
						
						| 
							 | 
						    SequenceClassifierOutputWithPast, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.modeling_utils import PreTrainedModel | 
					
					
						
						| 
							 | 
						from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13 | 
					
					
						
						| 
							 | 
						from transformers.utils import ( | 
					
					
						
						| 
							 | 
						    add_start_docstrings, | 
					
					
						
						| 
							 | 
						    add_start_docstrings_to_model_forward, | 
					
					
						
						| 
							 | 
						    is_flash_attn_greater_or_equal_2_10, | 
					
					
						
						| 
							 | 
						    logging, | 
					
					
						
						| 
							 | 
						    replace_return_docstrings, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.utils.import_utils import is_torch_fx_available | 
					
					
						
						| 
							 | 
						from .configuration_jamba import JambaConfig | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						try: | 
					
					
						
						| 
							 | 
						    from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
					
						
						| 
							 | 
						    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) | 
					
					
						
						| 
							 | 
						except ImportError: | 
					
					
						
						| 
							 | 
						    pass | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						if is_torch_fx_available(): | 
					
					
						
						| 
							 | 
						    if not is_torch_greater_or_equal_than_1_13: | 
					
					
						
						| 
							 | 
						        import torch.fx | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						try: | 
					
					
						
						| 
							 | 
						    from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn | 
					
					
						
						| 
							 | 
						    from mamba_ssm.ops.triton.selective_state_update import selective_state_update | 
					
					
						
						| 
							 | 
						except ImportError: | 
					
					
						
						| 
							 | 
						    selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						try: | 
					
					
						
						| 
							 | 
						    from causal_conv1d import causal_conv1d_fn, causal_conv1d_update | 
					
					
						
						| 
							 | 
						except ImportError: | 
					
					
						
						| 
							 | 
						    causal_conv1d_update, causal_conv1d_fn = None, None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						is_fast_path_available = all( | 
					
					
						
						| 
							 | 
						    (selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn) | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_CONFIG_FOR_DOC = "JambaConfig" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def load_balancing_loss_func( | 
					
					
						
						| 
							 | 
						        gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None | 
					
					
						
						| 
							 | 
						) -> float: | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss | 
					
					
						
						| 
							 | 
						    function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between | 
					
					
						
						| 
							 | 
						    experts is too unbalanced. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): | 
					
					
						
						| 
							 | 
						            Logits from the `router`, should be a tuple of model.config.num_hidden_layers tensors of | 
					
					
						
						| 
							 | 
						            shape [batch_size X sequence_length, num_experts]. | 
					
					
						
						| 
							 | 
						        attention_mask (`torch.Tensor`, None): | 
					
					
						
						| 
							 | 
						            The attention_mask used in forward function | 
					
					
						
						| 
							 | 
						            shape [batch_size X sequence_length] if not None. | 
					
					
						
						| 
							 | 
						        num_experts (`int`, *optional*): | 
					
					
						
						| 
							 | 
						            Number of experts | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Returns: | 
					
					
						
						| 
							 | 
						        The auxiliary loss. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    if gate_logits is None or not isinstance(gate_logits, tuple): | 
					
					
						
						| 
							 | 
						        return 0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if isinstance(gate_logits, tuple): | 
					
					
						
						| 
							 | 
						        compute_device = gate_logits[0].device | 
					
					
						
						| 
							 | 
						        concatenated_gate_logits = torch.cat( | 
					
					
						
						| 
							 | 
						            [layer_gate.to(compute_device) for layer_gate in gate_logits if layer_gate.shape[1] > 1], dim=0 | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if attention_mask is None: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        tokens_per_expert = torch.mean(expert_mask.float(), dim=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        router_prob_per_expert = torch.mean(routing_weights, dim=0) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        batch_size, sequence_length = attention_mask.shape | 
					
					
						
						| 
							 | 
						        num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        expert_attention_mask = ( | 
					
					
						
						| 
							 | 
						            attention_mask[None, :, :, None, None] | 
					
					
						
						| 
							 | 
						                .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) | 
					
					
						
						| 
							 | 
						                .reshape(-1, top_k, num_experts) | 
					
					
						
						| 
							 | 
						                .to(compute_device) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( | 
					
					
						
						| 
							 | 
						            expert_attention_mask, dim=0 | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        router_per_expert_attention_mask = ( | 
					
					
						
						| 
							 | 
						            attention_mask[None, :, :, None] | 
					
					
						
						| 
							 | 
						                .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) | 
					
					
						
						| 
							 | 
						                .reshape(-1, num_experts) | 
					
					
						
						| 
							 | 
						                .to(compute_device) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( | 
					
					
						
						| 
							 | 
						            router_per_expert_attention_mask, dim=0 | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) | 
					
					
						
						| 
							 | 
						    return overall_loss * num_experts | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def _get_unpad_data(attention_mask): | 
					
					
						
						| 
							 | 
						    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
					
						
						| 
							 | 
						    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
					
						
						| 
							 | 
						    max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
					
						
						| 
							 | 
						    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | 
					
					
						
						| 
							 | 
						    return ( | 
					
					
						
						| 
							 | 
						        indices, | 
					
					
						
						| 
							 | 
						        cu_seqlens, | 
					
					
						
						| 
							 | 
						        max_seqlen_in_batch, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class JambaRMSNorm(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, hidden_size, eps=1e-6): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        JambaRMSNorm is equivalent to T5LayerNorm | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
					
						
						| 
							 | 
						        self.variance_epsilon = eps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states): | 
					
					
						
						| 
							 | 
						        input_dtype = hidden_states.dtype | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.to(torch.float32) | 
					
					
						
						| 
							 | 
						        variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
					
						
						| 
							 | 
						        return self.weight * hidden_states.to(input_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
					
						
						| 
							 | 
						    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
					
						
						| 
							 | 
						    if n_rep == 1: | 
					
					
						
						| 
							 | 
						        return hidden_states | 
					
					
						
						| 
							 | 
						    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
					
						
						| 
							 | 
						    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class JambaAttention(nn.Module): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer | 
					
					
						
						| 
							 | 
						    and "Generating Long Sequences with Sparse Transformers". | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: JambaConfig, layer_idx: Optional[int] = None): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.layer_idx = layer_idx | 
					
					
						
						| 
							 | 
						        if layer_idx is None: | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | 
					
					
						
						| 
							 | 
						                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | 
					
					
						
						| 
							 | 
						                "when creating this class." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						        self.num_heads = config.num_attention_heads | 
					
					
						
						| 
							 | 
						        self.head_dim = self.hidden_size // self.num_heads | 
					
					
						
						| 
							 | 
						        self.num_key_value_heads = config.num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.is_causal = True | 
					
					
						
						| 
							 | 
						        self.attention_dropout = config.attention_dropout | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (self.head_dim * self.num_heads) != self.hidden_size: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | 
					
					
						
						| 
							 | 
						                f" and `num_heads`: {self.num_heads})." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) | 
					
					
						
						| 
							 | 
						        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | 
					
					
						
						| 
							 | 
						        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | 
					
					
						
						| 
							 | 
						        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | 
					
					
						
						| 
							 | 
						        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						            attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						            position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            past_key_value: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						            output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						            use_cache: bool = False, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						        if "padding_mask" in kwargs: | 
					
					
						
						| 
							 | 
						            warnings.warn( | 
					
					
						
						| 
							 | 
						                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        bsz, q_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = self.q_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        key_states = self.k_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        value_states = self.v_proj(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        kv_seq_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            if self.layer_idx is None: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
					
						
						| 
							 | 
						                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
					
						
						| 
							 | 
						                    "with a layer index." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						        value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | 
					
					
						
						| 
							 | 
						                f" {attn_weights.size()}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            attn_weights = attn_weights + attention_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | 
					
					
						
						| 
							 | 
						        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | 
					
					
						
						| 
							 | 
						        attn_output = torch.matmul(attn_weights, value_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
					
						
						| 
							 | 
						                f" {attn_output.size()}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.transpose(1, 2).contiguous() | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self.o_proj(attn_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not output_attentions: | 
					
					
						
						| 
							 | 
						            attn_weights = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, attn_weights, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class JambaFlashAttention2(JambaAttention): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Jamba flash attention module. This module inherits from `JambaAttention` as the weights of the module stays | 
					
					
						
						| 
							 | 
						    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
					
						
						| 
							 | 
						    flash attention and deal with padding tokens in case the input contains any of them. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def __init__(self, *args, **kwargs): | 
					
					
						
						| 
							 | 
						        super().__init__(*args, **kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						            attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						            position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            past_key_value: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						            output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						            use_cache: bool = False, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if "padding_mask" in kwargs: | 
					
					
						
						| 
							 | 
						            warnings.warn( | 
					
					
						
						| 
							 | 
						                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attention_mask = kwargs.pop("padding_mask") | 
					
					
						
						| 
							 | 
						        bsz, q_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = self.q_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        key_states = self.k_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        value_states = self.v_proj(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        kv_seq_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            if self.layer_idx is None: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
					
						
						| 
							 | 
						                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
					
						
						| 
							 | 
						                    "with a layer index." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        use_sliding_windows = ( | 
					
					
						
						| 
							 | 
						                _flash_supports_window_size | 
					
					
						
						| 
							 | 
						                and getattr(self.config, "sliding_window", None) is not None | 
					
					
						
						| 
							 | 
						                and kv_seq_len > self.config.sliding_window | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not _flash_supports_window_size: | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                "The current flash attention version does not support sliding window attention, for a more memory efficient implementation" | 
					
					
						
						| 
							 | 
						                " make sure to upgrade flash-attn library." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 | 
					
					
						
						| 
							 | 
						            if ( | 
					
					
						
						| 
							 | 
						                    getattr(self.config, "sliding_window", None) is not None | 
					
					
						
						| 
							 | 
						                    and kv_seq_len > self.config.sliding_window | 
					
					
						
						| 
							 | 
						                    and cache_has_contents | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                slicing_tokens = 1 - self.config.sliding_window | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                past_key = past_key_value[self.layer_idx][0] | 
					
					
						
						| 
							 | 
						                past_value = past_key_value[self.layer_idx][1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                past_key = past_key[:, :, slicing_tokens:, :].contiguous() | 
					
					
						
						| 
							 | 
						                past_value = past_value[:, :, slicing_tokens:, :].contiguous() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if past_key.shape[-2] != self.config.sliding_window - 1: | 
					
					
						
						| 
							 | 
						                    raise ValueError( | 
					
					
						
						| 
							 | 
						                        f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" | 
					
					
						
						| 
							 | 
						                        f" {past_key.shape}" | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if attention_mask is not None: | 
					
					
						
						| 
							 | 
						                    attention_mask = attention_mask[:, slicing_tokens:] | 
					
					
						
						| 
							 | 
						                    attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						        value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						        dropout_rate = 0.0 if not self.training else self.attention_dropout | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        input_dtype = query_states.dtype | 
					
					
						
						| 
							 | 
						        if input_dtype == torch.float32: | 
					
					
						
						| 
							 | 
						            if torch.is_autocast_enabled(): | 
					
					
						
						| 
							 | 
						                target_dtype = torch.get_autocast_gpu_dtype() | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
					
						
						| 
							 | 
						                target_dtype = self.config._pre_quantization_dtype | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                target_dtype = self.q_proj.weight.dtype | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
					
						
						| 
							 | 
						                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
					
						
						| 
							 | 
						                f" {target_dtype}." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            query_states = query_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						            key_states = key_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						            value_states = value_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        query_states = query_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self._flash_attention_forward( | 
					
					
						
						| 
							 | 
						            query_states, | 
					
					
						
						| 
							 | 
						            key_states, | 
					
					
						
						| 
							 | 
						            value_states, | 
					
					
						
						| 
							 | 
						            attention_mask, | 
					
					
						
						| 
							 | 
						            q_len, | 
					
					
						
						| 
							 | 
						            dropout=dropout_rate, | 
					
					
						
						| 
							 | 
						            use_sliding_windows=use_sliding_windows, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | 
					
					
						
						| 
							 | 
						        attn_output = self.o_proj(attn_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not output_attentions: | 
					
					
						
						| 
							 | 
						            attn_weights = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, attn_weights, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _flash_attention_forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            query_states, | 
					
					
						
						| 
							 | 
						            key_states, | 
					
					
						
						| 
							 | 
						            value_states, | 
					
					
						
						| 
							 | 
						            attention_mask, | 
					
					
						
						| 
							 | 
						            query_length, | 
					
					
						
						| 
							 | 
						            dropout=0.0, | 
					
					
						
						| 
							 | 
						            softmax_scale=None, | 
					
					
						
						| 
							 | 
						            use_sliding_windows=False, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | 
					
					
						
						| 
							 | 
						        first unpad the input, then computes the attention scores and pad the final attention scores. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            query_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Input query states to be passed to Flash Attention API | 
					
					
						
						| 
							 | 
						            key_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Input key states to be passed to Flash Attention API | 
					
					
						
						| 
							 | 
						            value_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Input value states to be passed to Flash Attention API | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | 
					
					
						
						| 
							 | 
						                position of padding tokens and 1 for the position of non-padding tokens. | 
					
					
						
						| 
							 | 
						            dropout (`int`, *optional*): | 
					
					
						
						| 
							 | 
						                Attention dropout | 
					
					
						
						| 
							 | 
						            softmax_scale (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | 
					
					
						
						| 
							 | 
						            use_sliding_windows (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether to activate sliding window attention. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        if not self._flash_attn_uses_top_left_mask: | 
					
					
						
						| 
							 | 
						            causal = self.is_causal | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            causal = self.is_causal and query_length != 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						            batch_size = query_states.shape[0] | 
					
					
						
						| 
							 | 
						            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | 
					
					
						
						| 
							 | 
						                query_states, key_states, value_states, attention_mask, query_length | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            cu_seqlens_q, cu_seqlens_k = cu_seq_lens | 
					
					
						
						| 
							 | 
						            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if not use_sliding_windows: | 
					
					
						
						| 
							 | 
						                attn_output_unpad = flash_attn_varlen_func( | 
					
					
						
						| 
							 | 
						                    query_states, | 
					
					
						
						| 
							 | 
						                    key_states, | 
					
					
						
						| 
							 | 
						                    value_states, | 
					
					
						
						| 
							 | 
						                    cu_seqlens_q=cu_seqlens_q, | 
					
					
						
						| 
							 | 
						                    cu_seqlens_k=cu_seqlens_k, | 
					
					
						
						| 
							 | 
						                    max_seqlen_q=max_seqlen_in_batch_q, | 
					
					
						
						| 
							 | 
						                    max_seqlen_k=max_seqlen_in_batch_k, | 
					
					
						
						| 
							 | 
						                    dropout_p=dropout, | 
					
					
						
						| 
							 | 
						                    softmax_scale=softmax_scale, | 
					
					
						
						| 
							 | 
						                    causal=causal, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                attn_output_unpad = flash_attn_varlen_func( | 
					
					
						
						| 
							 | 
						                    query_states, | 
					
					
						
						| 
							 | 
						                    key_states, | 
					
					
						
						| 
							 | 
						                    value_states, | 
					
					
						
						| 
							 | 
						                    cu_seqlens_q=cu_seqlens_q, | 
					
					
						
						| 
							 | 
						                    cu_seqlens_k=cu_seqlens_k, | 
					
					
						
						| 
							 | 
						                    max_seqlen_q=max_seqlen_in_batch_q, | 
					
					
						
						| 
							 | 
						                    max_seqlen_k=max_seqlen_in_batch_k, | 
					
					
						
						| 
							 | 
						                    dropout_p=dropout, | 
					
					
						
						| 
							 | 
						                    softmax_scale=softmax_scale, | 
					
					
						
						| 
							 | 
						                    causal=causal, | 
					
					
						
						| 
							 | 
						                    window_size=(self.config.sliding_window, self.config.sliding_window), | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            if not use_sliding_windows: | 
					
					
						
						| 
							 | 
						                attn_output = flash_attn_func( | 
					
					
						
						| 
							 | 
						                    query_states, | 
					
					
						
						| 
							 | 
						                    key_states, | 
					
					
						
						| 
							 | 
						                    value_states, | 
					
					
						
						| 
							 | 
						                    dropout, | 
					
					
						
						| 
							 | 
						                    softmax_scale=softmax_scale, | 
					
					
						
						| 
							 | 
						                    causal=causal, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                attn_output = flash_attn_func( | 
					
					
						
						| 
							 | 
						                    query_states, | 
					
					
						
						| 
							 | 
						                    key_states, | 
					
					
						
						| 
							 | 
						                    value_states, | 
					
					
						
						| 
							 | 
						                    dropout, | 
					
					
						
						| 
							 | 
						                    softmax_scale=softmax_scale, | 
					
					
						
						| 
							 | 
						                    causal=causal, | 
					
					
						
						| 
							 | 
						                    window_size=(self.config.sliding_window, self.config.sliding_window), | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | 
					
					
						
						| 
							 | 
						        batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if kv_seq_len != attention_mask.shape[-1]: | 
					
					
						
						| 
							 | 
						            attention_mask_num_tokens = attention_mask.shape[-1] | 
					
					
						
						| 
							 | 
						            attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | 
					
					
						
						| 
							 | 
						        value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if query_length == kv_seq_len: | 
					
					
						
						| 
							 | 
						            query_layer = index_first_axis( | 
					
					
						
						| 
							 | 
						                query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            cu_seqlens_q = cu_seqlens_k | 
					
					
						
						| 
							 | 
						            max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
					
						
						| 
							 | 
						            indices_q = indices_k | 
					
					
						
						| 
							 | 
						        elif query_length == 1: | 
					
					
						
						| 
							 | 
						            max_seqlen_in_batch_q = 1 | 
					
					
						
						| 
							 | 
						            cu_seqlens_q = torch.arange( | 
					
					
						
						| 
							 | 
						                batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
					
						
						| 
							 | 
						            )   | 
					
					
						
						| 
							 | 
						            indices_q = cu_seqlens_q[:-1] | 
					
					
						
						| 
							 | 
						            query_layer = query_layer.squeeze(1) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attention_mask = attention_mask[:, -query_length:] | 
					
					
						
						| 
							 | 
						            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return ( | 
					
					
						
						| 
							 | 
						            query_layer, | 
					
					
						
						| 
							 | 
						            key_layer, | 
					
					
						
						| 
							 | 
						            value_layer, | 
					
					
						
						| 
							 | 
						            indices_q, | 
					
					
						
						| 
							 | 
						            (cu_seqlens_q, cu_seqlens_k), | 
					
					
						
						| 
							 | 
						            (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class JambaSdpaAttention(JambaAttention): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Jamba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | 
					
					
						
						| 
							 | 
						    `JambaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | 
					
					
						
						| 
							 | 
						    SDPA API. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						            attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						            position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            past_key_value: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						            output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						            use_cache: bool = False, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						        if output_attentions: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                "JambaModel is using JambaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | 
					
					
						
						| 
							 | 
						                'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            return super().forward( | 
					
					
						
						| 
							 | 
						                hidden_states=hidden_states, | 
					
					
						
						| 
							 | 
						                attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						                position_ids=position_ids, | 
					
					
						
						| 
							 | 
						                past_key_value=past_key_value, | 
					
					
						
						| 
							 | 
						                output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						                use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bsz, q_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = self.q_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        key_states = self.k_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        value_states = self.v_proj(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        kv_seq_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						        value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if query_states.device.type == "cuda" and attention_mask is not None: | 
					
					
						
						| 
							 | 
						            query_states = query_states.contiguous() | 
					
					
						
						| 
							 | 
						            key_states = key_states.contiguous() | 
					
					
						
						| 
							 | 
						            value_states = value_states.contiguous() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
					
						
						| 
							 | 
						            query_states, | 
					
					
						
						| 
							 | 
						            key_states, | 
					
					
						
						| 
							 | 
						            value_states, | 
					
					
						
						| 
							 | 
						            attn_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            dropout_p=self.attention_dropout if self.training else 0.0, | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            is_causal=self.is_causal and attention_mask is None and q_len > 1, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.transpose(1, 2).contiguous() | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.view(bsz, q_len, self.hidden_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self.o_proj(attn_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, None, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						JAMBA_ATTENTION_CLASSES = { | 
					
					
						
						| 
							 | 
						    "eager": JambaAttention, | 
					
					
						
						| 
							 | 
						    "flash_attention_2": JambaFlashAttention2, | 
					
					
						
						| 
							 | 
						    "sdpa": JambaSdpaAttention, | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class HybridMambaAttentionDynamicCache(DynamicCache): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache | 
					
					
						
						| 
							 | 
						    (which has a constant shape regardless of seq_len). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    It stores the Key and Value states as a list of tensors, one for each layer. | 
					
					
						
						| 
							 | 
						    The expected shape for each tensor for attention layers is `[batch_size, num_heads, seq_len, head_dim]`. | 
					
					
						
						| 
							 | 
						    For the mamba layers, the `key_cache` represents the convolution state and has a shape of `[batch_size, d_inner, 1, d_conv]`, | 
					
					
						
						| 
							 | 
						    and the `value_cache` represents the ssm state and has a shape of `[batch_size, d_inner, 1, d_state]`. Mamba cache | 
					
					
						
						| 
							 | 
						    shape[2] is a dummy "seqlen" dimension to match the number of attention cache dimensions. For mamba, the cache | 
					
					
						
						| 
							 | 
						    doesn't grow with seqlen so this dimension is always 1. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self) -> None: | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.attention_layer_idx = None   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def update( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            key_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						            value_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						            layer_idx: int, | 
					
					
						
						| 
							 | 
						            cache_kwargs: Optional[Dict[str, Any]] = None, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Parameters: | 
					
					
						
						| 
							 | 
						            key_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                The new key states to cache. | 
					
					
						
						| 
							 | 
						            value_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                The new value states to cache. | 
					
					
						
						| 
							 | 
						            layer_idx (`int`): | 
					
					
						
						| 
							 | 
						                The index of the layer to cache the states for. | 
					
					
						
						| 
							 | 
						            cache_kwargs (`Dict[str, Any]`, `optional`): | 
					
					
						
						| 
							 | 
						                Additional arguments for the cache subclass. No additional arguments are used in `HybridMambaAttentionDynamicCache`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Return: | 
					
					
						
						| 
							 | 
						            A tuple containing the updated key and value states. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.attention_layer_idx is None and self._is_attn_layer(key_states, value_states): | 
					
					
						
						| 
							 | 
						            self.attention_layer_idx = layer_idx | 
					
					
						
						| 
							 | 
						        if self.attention_layer_idx is not None and layer_idx == self.attention_layer_idx: | 
					
					
						
						| 
							 | 
						            if hasattr(self, "_seen_tokens"): | 
					
					
						
						| 
							 | 
						                self._seen_tokens += key_states.shape[-2] | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                self.seen_tokens += key_states.shape[-2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if len(self.key_cache) <= layer_idx: | 
					
					
						
						| 
							 | 
						            self.key_cache.append(key_states) | 
					
					
						
						| 
							 | 
						            self.value_cache.append(value_states) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            if self._is_attn_layer(self.key_cache[layer_idx], self.value_cache[layer_idx]): | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2) | 
					
					
						
						| 
							 | 
						                self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                self.key_cache[layer_idx] = key_states | 
					
					
						
						| 
							 | 
						                self.value_cache[layer_idx] = value_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return self.key_cache[layer_idx], self.value_cache[layer_idx] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_seq_length(self, layer_idx: Optional[int] = None) -> int: | 
					
					
						
						| 
							 | 
						        """Returns the sequence length of the cached states. A layer index can be optionally passed.""" | 
					
					
						
						| 
							 | 
						        if layer_idx is not None: | 
					
					
						
						| 
							 | 
						            if len(self.key_cache) <= layer_idx: | 
					
					
						
						| 
							 | 
						                return 0 | 
					
					
						
						| 
							 | 
						            if self._is_attn_layer(self.key_cache[layer_idx], self.value_cache[layer_idx]): | 
					
					
						
						| 
							 | 
						                return self.key_cache[layer_idx].shape[-2] | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                warnings.warn( | 
					
					
						
						| 
							 | 
						                    f"Asked to get the sequence length from cache of layer {layer_idx} which is not an attention layer. " | 
					
					
						
						| 
							 | 
						                    f"Ignoring that and using an attention layer cache" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						        if self.attention_layer_idx is None or len(self.key_cache) <= self.attention_layer_idx: | 
					
					
						
						| 
							 | 
						            return 0 | 
					
					
						
						| 
							 | 
						        return self.key_cache[self.attention_layer_idx].shape[-2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod | 
					
					
						
						| 
							 | 
						    def _is_attn_layer(key_states: torch.Tensor, value_states: torch.Tensor): | 
					
					
						
						| 
							 | 
						        return key_states.shape[-1] == value_states.shape[-1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@dataclass | 
					
					
						
						| 
							 | 
						class MambaCacheParams: | 
					
					
						
						| 
							 | 
						    seqlen_offset: int = 0 | 
					
					
						
						| 
							 | 
						    conv_states: Dict[int, torch.Tensor] = field(default_factory=dict) | 
					
					
						
						| 
							 | 
						    ssm_states: Dict[int, torch.Tensor] = field(default_factory=dict) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class JambaMambaMixer(nn.Module): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. | 
					
					
						
						| 
							 | 
						    A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) | 
					
					
						
						| 
							 | 
						    ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, | 
					
					
						
						| 
							 | 
						    and is why Mamba is called **selective** state spaces) | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: JambaConfig, layer_idx): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.layer_idx = layer_idx | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						        self.ssm_state_size = config.mamba_d_state | 
					
					
						
						| 
							 | 
						        self.conv_kernel_size = config.mamba_d_conv | 
					
					
						
						| 
							 | 
						        self.intermediate_size = config.mamba_expand * config.hidden_size | 
					
					
						
						| 
							 | 
						        self.time_step_rank = config.mamba_dt_rank | 
					
					
						
						| 
							 | 
						        self.use_conv_bias = config.mamba_conv_bias | 
					
					
						
						| 
							 | 
						        self.use_bias = config.mamba_proj_bias | 
					
					
						
						| 
							 | 
						        self.conv1d = nn.Conv1d( | 
					
					
						
						| 
							 | 
						            in_channels=self.intermediate_size, | 
					
					
						
						| 
							 | 
						            out_channels=self.intermediate_size, | 
					
					
						
						| 
							 | 
						            bias=self.use_conv_bias, | 
					
					
						
						| 
							 | 
						            kernel_size=self.conv_kernel_size, | 
					
					
						
						| 
							 | 
						            groups=self.intermediate_size, | 
					
					
						
						| 
							 | 
						            padding=self.conv_kernel_size - 1, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.activation = config.hidden_act | 
					
					
						
						| 
							 | 
						        self.act = ACT2FN[config.hidden_act] | 
					
					
						
						| 
							 | 
						        self.apply_inner_layernorms = config.mamba_inner_layernorms | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.use_fast_kernels = config.use_mamba_kernels | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=self.use_bias) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :] | 
					
					
						
						| 
							 | 
						        A = A.expand(self.intermediate_size, -1).contiguous() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.A_log = nn.Parameter(torch.log(A)) | 
					
					
						
						| 
							 | 
						        self.D = nn.Parameter(torch.ones(self.intermediate_size)) | 
					
					
						
						| 
							 | 
						        self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.apply_inner_layernorms: | 
					
					
						
						| 
							 | 
						            self.dt_layernorm = JambaRMSNorm(self.time_step_rank, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						            self.B_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						            self.C_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.dt_layernorm = None | 
					
					
						
						| 
							 | 
						            self.B_layernorm = None | 
					
					
						
						| 
							 | 
						            self.C_layernorm = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not is_fast_path_available: | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                "The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`" | 
					
					
						
						| 
							 | 
						                " is None. To install follow https://github.com/state-spaces/mamba/#installation and" | 
					
					
						
						| 
							 | 
						                " https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _apply_layernorms(self, dt, B, C): | 
					
					
						
						| 
							 | 
						        if self.dt_layernorm is not None: | 
					
					
						
						| 
							 | 
						            dt = self.dt_layernorm(dt) | 
					
					
						
						| 
							 | 
						        if self.B_layernorm is not None: | 
					
					
						
						| 
							 | 
						            B = self.B_layernorm(B) | 
					
					
						
						| 
							 | 
						        if self.C_layernorm is not None: | 
					
					
						
						| 
							 | 
						            C = self.C_layernorm(C) | 
					
					
						
						| 
							 | 
						        return dt, B, C | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def cuda_kernels_forward(self, hidden_states: torch.Tensor, cache_params: MambaCacheParams = None): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        projected_states = self.in_proj(hidden_states).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						                self.training and cache_params is None and not self.apply_inner_layernorms | 
					
					
						
						| 
							 | 
						        ):   | 
					
					
						
						| 
							 | 
						            contextualized_states = mamba_inner_fn( | 
					
					
						
						| 
							 | 
						                projected_states, | 
					
					
						
						| 
							 | 
						                self.conv1d.weight, | 
					
					
						
						| 
							 | 
						                self.conv1d.bias if self.use_conv_bias else None, | 
					
					
						
						| 
							 | 
						                self.x_proj.weight, | 
					
					
						
						| 
							 | 
						                self.dt_proj.weight, | 
					
					
						
						| 
							 | 
						                self.out_proj.weight, | 
					
					
						
						| 
							 | 
						                self.out_proj.bias.float() if self.use_bias else None, | 
					
					
						
						| 
							 | 
						                -torch.exp(self.A_log.float()), | 
					
					
						
						| 
							 | 
						                None,   | 
					
					
						
						| 
							 | 
						                None,   | 
					
					
						
						| 
							 | 
						                self.D.float(), | 
					
					
						
						| 
							 | 
						                delta_bias=self.dt_proj.bias.float(), | 
					
					
						
						| 
							 | 
						                delta_softplus=True, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            hidden_states, gate = projected_states.chunk(2, dim=1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2)) | 
					
					
						
						| 
							 | 
						            if cache_params is not None and cache_params.seqlen_offset > 0: | 
					
					
						
						| 
							 | 
						                hidden_states = causal_conv1d_update( | 
					
					
						
						| 
							 | 
						                    hidden_states.squeeze(-1), | 
					
					
						
						| 
							 | 
						                    cache_params.conv_states[self.layer_idx], | 
					
					
						
						| 
							 | 
						                    conv_weights, | 
					
					
						
						| 
							 | 
						                    self.conv1d.bias, | 
					
					
						
						| 
							 | 
						                    self.activation, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                hidden_states = hidden_states.unsqueeze(-1) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                if cache_params is not None: | 
					
					
						
						| 
							 | 
						                    conv_states = nn.functional.pad( | 
					
					
						
						| 
							 | 
						                        hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0) | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                    cache_params.conv_states[self.layer_idx].copy_(conv_states) | 
					
					
						
						| 
							 | 
						                hidden_states = causal_conv1d_fn( | 
					
					
						
						| 
							 | 
						                    hidden_states, conv_weights, self.conv1d.bias, activation=self.activation | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            ssm_parameters = self.x_proj(hidden_states.transpose(1, 2)) | 
					
					
						
						| 
							 | 
						            time_step, B, C = torch.split( | 
					
					
						
						| 
							 | 
						                ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            time_step, B, C = self._apply_layernorms(time_step, B, C) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if hasattr(self.dt_proj, "base_layer"): | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                time_proj_bias = self.dt_proj.base_layer.bias | 
					
					
						
						| 
							 | 
						                self.dt_proj.base_layer.bias = None | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                time_proj_bias = self.dt_proj.bias | 
					
					
						
						| 
							 | 
						                self.dt_proj.bias = None | 
					
					
						
						| 
							 | 
						            discrete_time_step = self.dt_proj(time_step).transpose(1, 2) | 
					
					
						
						| 
							 | 
						            if hasattr(self.dt_proj, "base_layer"): | 
					
					
						
						| 
							 | 
						                self.dt_proj.base_layer.bias = time_proj_bias | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                self.dt_proj.bias = time_proj_bias | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            A = -torch.exp(self.A_log.float()) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            time_proj_bias = time_proj_bias.float() if time_proj_bias is not None else None | 
					
					
						
						| 
							 | 
						            if cache_params is not None and cache_params.seqlen_offset > 0: | 
					
					
						
						| 
							 | 
						                scan_outputs = selective_state_update( | 
					
					
						
						| 
							 | 
						                    cache_params.ssm_states[self.layer_idx], | 
					
					
						
						| 
							 | 
						                    hidden_states[..., 0], | 
					
					
						
						| 
							 | 
						                    discrete_time_step[..., 0], | 
					
					
						
						| 
							 | 
						                    A, | 
					
					
						
						| 
							 | 
						                    B[:, 0], | 
					
					
						
						| 
							 | 
						                    C[:, 0], | 
					
					
						
						| 
							 | 
						                    self.D, | 
					
					
						
						| 
							 | 
						                    gate[..., 0], | 
					
					
						
						| 
							 | 
						                    time_proj_bias, | 
					
					
						
						| 
							 | 
						                    dt_softplus=True, | 
					
					
						
						| 
							 | 
						                ).unsqueeze(-1) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                scan_outputs, ssm_state = selective_scan_fn( | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    discrete_time_step, | 
					
					
						
						| 
							 | 
						                    A, | 
					
					
						
						| 
							 | 
						                    B.transpose(1, 2), | 
					
					
						
						| 
							 | 
						                    C.transpose(1, 2), | 
					
					
						
						| 
							 | 
						                    self.D.float(), | 
					
					
						
						| 
							 | 
						                    gate, | 
					
					
						
						| 
							 | 
						                    time_proj_bias, | 
					
					
						
						| 
							 | 
						                    delta_softplus=True, | 
					
					
						
						| 
							 | 
						                    return_last_state=True, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                if ssm_state is not None and cache_params is not None: | 
					
					
						
						| 
							 | 
						                    cache_params.ssm_states[self.layer_idx].copy_(ssm_state) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            contextualized_states = self.out_proj(scan_outputs.transpose(1, 2)) | 
					
					
						
						| 
							 | 
						        return contextualized_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def slow_forward(self, input_states, cache_params: MambaCacheParams = None): | 
					
					
						
						| 
							 | 
						        batch_size, seq_len, _ = input_states.shape | 
					
					
						
						| 
							 | 
						        dtype = input_states.dtype | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        projected_states = self.in_proj(input_states).transpose(1, 2)                    | 
					
					
						
						| 
							 | 
						        hidden_states, gate = projected_states.chunk(2, dim=1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if cache_params is not None: | 
					
					
						
						| 
							 | 
						            if self.training: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                ssm_state = cache_params.ssm_states[self.layer_idx].clone() | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                ssm_state = cache_params.ssm_states[self.layer_idx] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if cache_params.seqlen_offset > 0: | 
					
					
						
						| 
							 | 
						                conv_state = cache_params.conv_states[self.layer_idx]                    | 
					
					
						
						| 
							 | 
						                conv_state = torch.roll(conv_state, shifts=-1, dims=-1) | 
					
					
						
						| 
							 | 
						                conv_state[:, :, -1] = hidden_states[:, :, 0] | 
					
					
						
						| 
							 | 
						                cache_params.conv_states[self.layer_idx].copy_(conv_state) | 
					
					
						
						| 
							 | 
						                hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1) | 
					
					
						
						| 
							 | 
						                if self.use_conv_bias: | 
					
					
						
						| 
							 | 
						                    hidden_states += self.conv1d.bias | 
					
					
						
						| 
							 | 
						                hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1)          | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                conv_state = nn.functional.pad( | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    (self.conv_kernel_size - hidden_states.shape[-1], 0) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                cache_params.conv_states[self.layer_idx].copy_(conv_state) | 
					
					
						
						| 
							 | 
						                hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])      | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            ssm_state = torch.zeros( | 
					
					
						
						| 
							 | 
						                (batch_size, self.intermediate_size, self.ssm_state_size), | 
					
					
						
						| 
							 | 
						                device=hidden_states.device, dtype=dtype | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])          | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        ssm_parameters = self.x_proj(hidden_states.transpose(1, 2)) | 
					
					
						
						| 
							 | 
						        time_step, B, C = torch.split( | 
					
					
						
						| 
							 | 
						            ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        time_step, B, C = self._apply_layernorms(time_step, B, C) | 
					
					
						
						| 
							 | 
						        discrete_time_step = self.dt_proj(time_step)                                     | 
					
					
						
						| 
							 | 
						        discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2)  | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        A = -torch.exp(self.A_log.float())                                               | 
					
					
						
						| 
							 | 
						        discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None])  | 
					
					
						
						| 
							 | 
						        discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float()        | 
					
					
						
						| 
							 | 
						        deltaB_u = discrete_B * hidden_states[:, :, :, None].float() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        scan_outputs = [] | 
					
					
						
						| 
							 | 
						        for i in range(seq_len): | 
					
					
						
						| 
							 | 
						            ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :]       | 
					
					
						
						| 
							 | 
						            scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1))   | 
					
					
						
						| 
							 | 
						            scan_outputs.append(scan_output[:, :, 0]) | 
					
					
						
						| 
							 | 
						        scan_output = torch.stack(scan_outputs, dim=-1)                                 | 
					
					
						
						| 
							 | 
						        scan_output = scan_output + (hidden_states * self.D[None, :, None]) | 
					
					
						
						| 
							 | 
						        scan_output = (scan_output * self.act(gate)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if cache_params is not None: | 
					
					
						
						| 
							 | 
						            cache_params.ssm_states[self.layer_idx].copy_(ssm_state) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        contextualized_states = self.out_proj(scan_output.transpose(1, 2))              | 
					
					
						
						| 
							 | 
						        return contextualized_states | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def mixer_forward(self, hidden_states, cache_params: MambaCacheParams = None): | 
					
					
						
						| 
							 | 
						        if self.use_fast_kernels: | 
					
					
						
						| 
							 | 
						            if not is_fast_path_available or "cuda" not in self.x_proj.weight.device.type: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    "Fast Mamba kernels are not available. Make sure to they are installed and that the mamba module is on a CUDA device" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            return self.cuda_kernels_forward(hidden_states, cache_params) | 
					
					
						
						| 
							 | 
						        return self.slow_forward(hidden_states, cache_params) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						            past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            cache_params = MambaCacheParams( | 
					
					
						
						| 
							 | 
						                seqlen_offset=0 if hidden_states.shape[1] > 1 else past_key_value.seen_tokens, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            if len(past_key_value.key_cache) > self.layer_idx: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                cache_params.conv_states[self.layer_idx] = past_key_value.key_cache[self.layer_idx].squeeze(2) | 
					
					
						
						| 
							 | 
						                cache_params.ssm_states[self.layer_idx] = past_key_value.value_cache[self.layer_idx].squeeze(2) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                batch_size = hidden_states.shape[0] | 
					
					
						
						| 
							 | 
						                cache_params.conv_states[self.layer_idx] = torch.zeros( | 
					
					
						
						| 
							 | 
						                    batch_size, | 
					
					
						
						| 
							 | 
						                    self.intermediate_size, | 
					
					
						
						| 
							 | 
						                    self.conv_kernel_size, | 
					
					
						
						| 
							 | 
						                    device=hidden_states.device, | 
					
					
						
						| 
							 | 
						                    dtype=hidden_states.dtype, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                cache_params.ssm_states[self.layer_idx] = torch.zeros( | 
					
					
						
						| 
							 | 
						                    batch_size, | 
					
					
						
						| 
							 | 
						                    self.intermediate_size, | 
					
					
						
						| 
							 | 
						                    self.ssm_state_size, | 
					
					
						
						| 
							 | 
						                    device=hidden_states.device, | 
					
					
						
						| 
							 | 
						                    dtype=hidden_states.dtype, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            cache_params = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        res = self.mixer_forward(hidden_states, cache_params) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            past_key_value.update( | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                cache_params.conv_states[self.layer_idx].unsqueeze(2), | 
					
					
						
						| 
							 | 
						                cache_params.ssm_states[self.layer_idx].unsqueeze(2), | 
					
					
						
						| 
							 | 
						                self.layer_idx, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return res, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class JambaMLP(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: JambaConfig): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.ffn_dim = config.intermediate_size | 
					
					
						
						| 
							 | 
						        self.hidden_dim = config.hidden_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.gate_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) | 
					
					
						
						| 
							 | 
						        self.down_proj = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) | 
					
					
						
						| 
							 | 
						        self.up_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.act_fn = ACT2FN[config.hidden_act] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class JambaSparseMoeBlock(nn.Module): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    This implementation is | 
					
					
						
						| 
							 | 
						    strictly equivalent to standard MoE with full capacity (no | 
					
					
						
						| 
							 | 
						    dropped tokens). It's faster since it formulates MoE operations | 
					
					
						
						| 
							 | 
						    in terms of block-sparse operations to accomodate imbalanced | 
					
					
						
						| 
							 | 
						    assignments of tokens to experts, whereas standard MoE either | 
					
					
						
						| 
							 | 
						    (1) drop tokens at the cost of reduced performance or (2) set | 
					
					
						
						| 
							 | 
						    capacity factor to number of experts and thus waste computation | 
					
					
						
						| 
							 | 
						    and memory on padding. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: JambaConfig, num_experts: int, num_experts_per_tok: int): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.hidden_dim = config.hidden_size | 
					
					
						
						| 
							 | 
						        self.ffn_dim = config.intermediate_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.num_experts = num_experts | 
					
					
						
						| 
							 | 
						        self.top_k = num_experts_per_tok | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if num_experts > 1: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.router = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.experts = nn.ModuleList([JambaMLP(config) for _ in range(self.num_experts)]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
					
						
						| 
							 | 
						        """ """ | 
					
					
						
						| 
							 | 
						        batch_size, sequence_length, hidden_dim = hidden_states.shape | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.num_experts == 1: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            final_hidden_states = self.experts[0](hidden_states) | 
					
					
						
						| 
							 | 
						            router_logits = torch.ones( | 
					
					
						
						| 
							 | 
						                (batch_size * sequence_length, 1), | 
					
					
						
						| 
							 | 
						                device=hidden_states.device, | 
					
					
						
						| 
							 | 
						                dtype=hidden_states.dtype, | 
					
					
						
						| 
							 | 
						                requires_grad=hidden_states.requires_grad, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            return final_hidden_states, router_logits | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.view(-1, hidden_dim) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        router_logits = self.router(hidden_states) | 
					
					
						
						| 
							 | 
						        routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) | 
					
					
						
						| 
							 | 
						        routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        routing_weights = routing_weights.to(hidden_states.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        final_hidden_states = torch.zeros( | 
					
					
						
						| 
							 | 
						            (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        for expert_idx in range(self.num_experts): | 
					
					
						
						| 
							 | 
						            expert_layer = self.experts[expert_idx] | 
					
					
						
						| 
							 | 
						            idx, top_x = torch.where(expert_mask[expert_idx]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if top_x.shape[0] == 0: | 
					
					
						
						| 
							 | 
						                continue | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            top_x_list = top_x.tolist() | 
					
					
						
						| 
							 | 
						            idx_list = idx.tolist() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim) | 
					
					
						
						| 
							 | 
						            current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) | 
					
					
						
						| 
							 | 
						        final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) | 
					
					
						
						| 
							 | 
						        return final_hidden_states, router_logits | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class JambaAttentionDecoderLayer(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: JambaConfig, num_experts: int, layer_idx: int): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.self_attn = JAMBA_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        num_experts_per_tok = config.num_experts_per_tok if num_experts > 1 else 1 | 
					
					
						
						| 
							 | 
						        self.moe = JambaSparseMoeBlock(config, num_experts=num_experts, num_experts_per_tok=num_experts_per_tok) | 
					
					
						
						| 
							 | 
						        self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						        self.pre_moe_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						            attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						            position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						            output_attentions: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						            output_router_logits: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						            use_cache: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
					
						
						| 
							 | 
						        if "padding_mask" in kwargs: | 
					
					
						
						| 
							 | 
						            warnings.warn( | 
					
					
						
						| 
							 | 
						                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
					
						
						| 
							 | 
						                `(batch, sequence_length)` where padding elements are indicated by 0. | 
					
					
						
						| 
							 | 
						            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
					
						
						| 
							 | 
						            output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
					
						
						| 
							 | 
						                returned tensors for more detail. | 
					
					
						
						| 
							 | 
						            output_router_logits (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the logits of all the routers. They are useful for computing the router loss, and | 
					
					
						
						| 
							 | 
						                should not be returned during inference. | 
					
					
						
						| 
							 | 
						            use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
					
						
						| 
							 | 
						                (see `past_key_values`). | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.input_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states, self_attn_weights, present_key_value = self.self_attn( | 
					
					
						
						| 
							 | 
						            hidden_states=hidden_states, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_value=past_key_value, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						        hidden_states = self.pre_moe_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states, router_logits = self.moe(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        outputs = (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_attentions: | 
					
					
						
						| 
							 | 
						            outputs += (self_attn_weights,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if use_cache: | 
					
					
						
						| 
							 | 
						            outputs += (present_key_value,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_router_logits: | 
					
					
						
						| 
							 | 
						            outputs += (router_logits,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return outputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class JambaMambaDecoderLayer(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: JambaConfig, num_experts: int, layer_idx: int): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.mamba = JambaMambaMixer(config=config, layer_idx=layer_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        num_experts_per_tok = config.num_experts_per_tok if num_experts > 1 else 1 | 
					
					
						
						| 
							 | 
						        self.moe = JambaSparseMoeBlock(config, num_experts=num_experts, num_experts_per_tok=num_experts_per_tok) | 
					
					
						
						| 
							 | 
						        self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						        self.pre_moe_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						            attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						            position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, | 
					
					
						
						| 
							 | 
						            output_attentions: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						            output_router_logits: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						            use_cache: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
					
						
						| 
							 | 
						        if "padding_mask" in kwargs: | 
					
					
						
						| 
							 | 
						            warnings.warn( | 
					
					
						
						| 
							 | 
						                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
					
						
						| 
							 | 
						                `(batch, sequence_length)` where padding elements are indicated by 0. | 
					
					
						
						| 
							 | 
						            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
					
						
						| 
							 | 
						            output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
					
						
						| 
							 | 
						                returned tensors for more detail. | 
					
					
						
						| 
							 | 
						            output_router_logits (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the logits of all the routers. They are useful for computing the router loss, and | 
					
					
						
						| 
							 | 
						                should not be returned during inference. | 
					
					
						
						| 
							 | 
						            use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
					
						
						| 
							 | 
						                (see `past_key_values`). | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.input_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states, present_key_value = self.mamba( | 
					
					
						
						| 
							 | 
						            hidden_states=hidden_states, | 
					
					
						
						| 
							 | 
						            past_key_value=past_key_value, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        bs, seqlen, _ = hidden_states.shape | 
					
					
						
						| 
							 | 
						        past_seqlen = self._get_past_seqlen(past_key_value, seqlen) | 
					
					
						
						| 
							 | 
						        num_attention_heads = self.mamba.config.num_attention_heads | 
					
					
						
						| 
							 | 
						        self_attn_weights = torch.empty(bs, num_attention_heads, seqlen, past_seqlen, device="meta") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						        hidden_states = self.pre_moe_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states, router_logits = self.moe(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        outputs = (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_attentions: | 
					
					
						
						| 
							 | 
						            outputs += (self_attn_weights,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if use_cache: | 
					
					
						
						| 
							 | 
						            outputs += (present_key_value,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_router_logits: | 
					
					
						
						| 
							 | 
						            outputs += (router_logits,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return outputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _get_past_seqlen(self, past_key_value, seqlen): | 
					
					
						
						| 
							 | 
						        if past_key_value is None: | 
					
					
						
						| 
							 | 
						            return seqlen | 
					
					
						
						| 
							 | 
						        past_seqlen = past_key_value.get_seq_length() | 
					
					
						
						| 
							 | 
						        if past_seqlen == 0: | 
					
					
						
						| 
							 | 
						            return seqlen | 
					
					
						
						| 
							 | 
						        if past_key_value.attention_layer_idx is None: | 
					
					
						
						| 
							 | 
						            return seqlen | 
					
					
						
						| 
							 | 
						        if self.mamba.layer_idx < past_key_value.attention_layer_idx: | 
					
					
						
						| 
							 | 
						            return past_seqlen + 1 | 
					
					
						
						| 
							 | 
						        return past_seqlen | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						JAMBA_START_DOCSTRING = r""" | 
					
					
						
						| 
							 | 
						    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
					
						
						| 
							 | 
						    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
					
						
						| 
							 | 
						    etc.) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
					
						
						| 
							 | 
						    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
					
						
						| 
							 | 
						    and behavior. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Parameters: | 
					
					
						
						| 
							 | 
						        config ([`JambaConfig`]): | 
					
					
						
						| 
							 | 
						            Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
					
						
						| 
							 | 
						            load the weights associated with the model, only the configuration. Check out the | 
					
					
						
						| 
							 | 
						            [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    "The bare Jamba Model outputting raw hidden-states without any specific head on top.", | 
					
					
						
						| 
							 | 
						    JAMBA_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class JambaPreTrainedModel(PreTrainedModel): | 
					
					
						
						| 
							 | 
						    config_class = JambaConfig | 
					
					
						
						| 
							 | 
						    base_model_prefix = "model" | 
					
					
						
						| 
							 | 
						    supports_gradient_checkpointing = True | 
					
					
						
						| 
							 | 
						    _no_split_modules = ["JambaAttentionDecoderLayer", "JambaMambaDecoderLayer"] | 
					
					
						
						| 
							 | 
						    _skip_keys_device_placement = "past_key_values" | 
					
					
						
						| 
							 | 
						    _supports_flash_attn_2 = True | 
					
					
						
						| 
							 | 
						    _supports_sdpa = True | 
					
					
						
						| 
							 | 
						    _supports_cache_class = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _init_weights(self, module): | 
					
					
						
						| 
							 | 
						        std = self.config.initializer_range | 
					
					
						
						| 
							 | 
						        if isinstance(module, (nn.Linear, nn.Conv1d)): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.bias is not None: | 
					
					
						
						| 
							 | 
						                module.bias.data.zero_() | 
					
					
						
						| 
							 | 
						        elif isinstance(module, nn.Embedding): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.padding_idx is not None: | 
					
					
						
						| 
							 | 
						                module.weight.data[module.padding_idx].zero_() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod | 
					
					
						
						| 
							 | 
						    def _convert_to_standard_cache( | 
					
					
						
						| 
							 | 
						            past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int | 
					
					
						
						| 
							 | 
						    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Standardizes the format of the cache so as to match most implementations, i.e. have the seqlen as the third dim | 
					
					
						
						| 
							 | 
						        also for mamba layers | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        attn_layer_index = [k.shape == v.shape for k, v in past_key_value].index(True) | 
					
					
						
						| 
							 | 
						        seqlen = past_key_value[attn_layer_index][0].shape[2] | 
					
					
						
						| 
							 | 
						        standard_past_key_value = () | 
					
					
						
						| 
							 | 
						        for k, v in past_key_value: | 
					
					
						
						| 
							 | 
						            if k.shape != v.shape: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                standard_past_key_value += ((k.expand(-1, -1, seqlen, -1), v.expand(-1, -1, seqlen, -1)),) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                standard_past_key_value += ((k, v),) | 
					
					
						
						| 
							 | 
						        return standard_past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod | 
					
					
						
						| 
							 | 
						    def _convert_to_jamba_cache( | 
					
					
						
						| 
							 | 
						            past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], | 
					
					
						
						| 
							 | 
						    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Converts the cache to the format expected by Jamba, i.e. dummy seqlen dimesion with size 1 for mamba layers | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        jamba_past_key_value = () | 
					
					
						
						| 
							 | 
						        for k, v in past_key_value: | 
					
					
						
						| 
							 | 
						            if k.shape != v.shape: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                jamba_past_key_value += ((k[:, :, :1, :], v[:, :, :1, :]),) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                jamba_past_key_value += ((k, v),) | 
					
					
						
						| 
							 | 
						        return jamba_past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						JAMBA_INPUTS_DOCSTRING = r""" | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
					
						
						| 
							 | 
						            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
					
						
						| 
							 | 
						            it. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
					
						
						| 
							 | 
						            [`PreTrainedTokenizer.__call__`] for details. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are input IDs?](../glossary#input-ids) | 
					
					
						
						| 
							 | 
						        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            - 1 for tokens that are **not masked**, | 
					
					
						
						| 
							 | 
						            - 0 for tokens that are **masked**. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are attention masks?](../glossary#attention-mask) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
					
						
						| 
							 | 
						            [`PreTrainedTokenizer.__call__`] for details. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | 
					
					
						
						| 
							 | 
						            `past_key_values`). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
					
						
						| 
							 | 
						            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
					
						
						| 
							 | 
						            information on the default strategy. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            - 1 indicates the head is **not masked**, | 
					
					
						
						| 
							 | 
						            - 0 indicates the head is **masked**. | 
					
					
						
						| 
							 | 
						        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
					
						
						| 
							 | 
						            config.n_positions - 1]`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are position IDs?](../glossary#position-ids) | 
					
					
						
						| 
							 | 
						        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | 
					
					
						
						| 
							 | 
						            Tuple of `tuple(torch.FloatTensor)` of length `config.num_hidden_layers`, with each tuple having 2 tensors | 
					
					
						
						| 
							 | 
						            corresponding to the cache of the layer. | 
					
					
						
						| 
							 | 
						            For attention layers, both tensors have shape of `(batch_size, num_kv_heads, sequence_length, embed_size_per_head)` | 
					
					
						
						| 
							 | 
						            For mamba layers, the first tensor represents the convolution state and has shape of `(batch_size, d_inner, 1, d_conv)`, | 
					
					
						
						| 
							 | 
						            and the second tensor represents the ssm state and has shape of `(batch_size, d_inner, 1, d_state)`. Mamba | 
					
					
						
						| 
							 | 
						            cache shape[2] is a dummy "seqlen" dimension to match the number of attention cache dimensions. For mamba, | 
					
					
						
						| 
							 | 
						            the cache doesn't grow with seqlen so this dimension is always 1. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Contains pre-computed hidden-states (key and values in the self-attention blocks and convolution and | 
					
					
						
						| 
							 | 
						            ssm states in the mamba blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that | 
					
					
						
						| 
							 | 
						            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | 
					
					
						
						| 
							 | 
						            `input_ids` of shape `(batch_size, sequence_length)`. | 
					
					
						
						| 
							 | 
						        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
					
						
						| 
							 | 
						            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
					
						
						| 
							 | 
						            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
					
						
						| 
							 | 
						            model's internal embedding lookup matrix. | 
					
					
						
						| 
							 | 
						        use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
					
						
						| 
							 | 
						            `past_key_values`). | 
					
					
						
						| 
							 | 
						        output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
					
						
						| 
							 | 
						            tensors for more detail. | 
					
					
						
						| 
							 | 
						        output_hidden_states (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
					
						
						| 
							 | 
						            more detail. | 
					
					
						
						| 
							 | 
						        output_router_logits (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return the logits of all the routers. They are useful for computing the router loss, and | 
					
					
						
						| 
							 | 
						            should not be returned during inference. | 
					
					
						
						| 
							 | 
						        return_dict (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    "The bare Jamba Model outputting raw hidden-states without any specific head on top.", | 
					
					
						
						| 
							 | 
						    JAMBA_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class JambaModel(JambaPreTrainedModel): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`JambaDecoderLayer`] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        config: JambaConfig | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: JambaConfig): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.padding_idx = config.pad_token_id | 
					
					
						
						| 
							 | 
						        self.vocab_size = config.vocab_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        decoder_layers = [] | 
					
					
						
						| 
							 | 
						        for i in range(config.num_hidden_layers): | 
					
					
						
						| 
							 | 
						            is_attn = True if (i - self.config.attn_layer_offset) % self.config.attn_layer_period == 0 else False | 
					
					
						
						| 
							 | 
						            is_expert = True if (i - self.config.expert_layer_offset) % self.config.expert_layer_period == 0 else False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            num_experts = self.config.num_experts if is_expert else 1 | 
					
					
						
						| 
							 | 
						            if is_attn: | 
					
					
						
						| 
							 | 
						                decoder_layers.append(JambaAttentionDecoderLayer(config, num_experts=num_experts, layer_idx=i)) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                decoder_layers.append(JambaMambaDecoderLayer(config, num_experts=num_experts, layer_idx=i)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not any(isinstance(layer, JambaAttentionDecoderLayer) for layer in decoder_layers): | 
					
					
						
						| 
							 | 
						            raise ValueError("At least one layer in the decoder must be an attention layer") | 
					
					
						
						| 
							 | 
						        self._attn_layer_index = [isinstance(layer, JambaAttentionDecoderLayer) for layer in decoder_layers].index( | 
					
					
						
						| 
							 | 
						            True | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not any(isinstance(layer, JambaMambaDecoderLayer) for layer in decoder_layers): | 
					
					
						
						| 
							 | 
						            raise ValueError("At least one layer in the decoder must be a Mamba layer") | 
					
					
						
						| 
							 | 
						        self._mamba_layer_index = [isinstance(layer, JambaMambaDecoderLayer) for layer in decoder_layers].index(True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						                decoder_layers[self._mamba_layer_index].mamba.ssm_state_size | 
					
					
						
						| 
							 | 
						                == decoder_layers[self._mamba_layer_index].mamba.conv_kernel_size | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            raise ValueError("Mamba state size and convolution size must be different") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.layers = nn.ModuleList(decoder_layers) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self._attn_implementation = config._attn_implementation | 
					
					
						
						| 
							 | 
						        self.final_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.gradient_checkpointing = False | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            input_ids: torch.LongTensor = None, | 
					
					
						
						| 
							 | 
						            attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						            position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            past_key_values: Optional[Union[List[torch.FloatTensor], HybridMambaAttentionDynamicCache]] = None, | 
					
					
						
						| 
							 | 
						            inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						            use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            output_router_logits: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, MoeModelOutputWithPast]: | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_router_logits = ( | 
					
					
						
						| 
							 | 
						            output_router_logits if output_router_logits is not None else self.config.output_router_logits | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if input_ids is not None and inputs_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | 
					
					
						
						| 
							 | 
						        elif input_ids is not None: | 
					
					
						
						| 
							 | 
						            batch_size, seq_length = input_ids.shape | 
					
					
						
						| 
							 | 
						        elif inputs_embeds is not None: | 
					
					
						
						| 
							 | 
						            batch_size, seq_length, _ = inputs_embeds.shape | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            raise ValueError("You have to specify either input_ids or inputs_embeds") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        past_key_values_length = 0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						            if use_cache: | 
					
					
						
						| 
							 | 
						                logger.warning_once( | 
					
					
						
						| 
							 | 
						                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                use_cache = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if use_cache: | 
					
					
						
						| 
							 | 
						            if isinstance(past_key_values, Cache) and not isinstance( | 
					
					
						
						| 
							 | 
						                    past_key_values, HybridMambaAttentionDynamicCache | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                past_key_values = HybridMambaAttentionDynamicCache.from_legacy_cache(past_key_values.to_legacy_cache()) | 
					
					
						
						| 
							 | 
						            use_legacy_cache = not isinstance(past_key_values, HybridMambaAttentionDynamicCache) | 
					
					
						
						| 
							 | 
						            if use_legacy_cache: | 
					
					
						
						| 
							 | 
						                past_key_values = HybridMambaAttentionDynamicCache.from_legacy_cache(past_key_values) | 
					
					
						
						| 
							 | 
						            past_key_values_length = past_key_values.get_usable_length(seq_length, self._attn_layer_index) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if position_ids is None: | 
					
					
						
						| 
							 | 
						            device = input_ids.device if input_ids is not None else inputs_embeds.device | 
					
					
						
						| 
							 | 
						            position_ids = torch.arange( | 
					
					
						
						| 
							 | 
						                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            position_ids = position_ids.view(-1, seq_length).long() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if inputs_embeds is None: | 
					
					
						
						| 
							 | 
						            inputs_embeds = self.embed_tokens(input_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: | 
					
					
						
						| 
							 | 
						            is_padding_right = attention_mask[:, -1].sum().item() != batch_size | 
					
					
						
						| 
							 | 
						            if is_padding_right: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    "You are attempting to perform batched generation with padding_side='right'" | 
					
					
						
						| 
							 | 
						                    " this may lead to unexpected behaviour for Flash Attention version of Jamba. Make sure to " | 
					
					
						
						| 
							 | 
						                    " call `tokenizer.padding_side  = 'left'` before tokenizing the input. " | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self._attn_implementation == "flash_attention_2": | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | 
					
					
						
						| 
							 | 
						        elif self._attn_implementation == "sdpa" and not output_attentions: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | 
					
					
						
						| 
							 | 
						                attention_mask, | 
					
					
						
						| 
							 | 
						                (batch_size, seq_length), | 
					
					
						
						| 
							 | 
						                inputs_embeds, | 
					
					
						
						| 
							 | 
						                past_key_values_length, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attention_mask = _prepare_4d_causal_attention_mask( | 
					
					
						
						| 
							 | 
						                attention_mask, | 
					
					
						
						| 
							 | 
						                (batch_size, seq_length), | 
					
					
						
						| 
							 | 
						                inputs_embeds, | 
					
					
						
						| 
							 | 
						                past_key_values_length, | 
					
					
						
						| 
							 | 
						                sliding_window=self.config.sliding_window, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = inputs_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        all_hidden_states = () if output_hidden_states else None | 
					
					
						
						| 
							 | 
						        all_self_attns = () if output_attentions else None | 
					
					
						
						| 
							 | 
						        all_router_logits = () if output_router_logits else None | 
					
					
						
						| 
							 | 
						        next_decoder_cache = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for decoder_layer in self.layers: | 
					
					
						
						| 
							 | 
						            if output_hidden_states: | 
					
					
						
						| 
							 | 
						                all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						                layer_outputs = self._gradient_checkpointing_func( | 
					
					
						
						| 
							 | 
						                    decoder_layer.__call__, | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    attention_mask, | 
					
					
						
						| 
							 | 
						                    position_ids, | 
					
					
						
						| 
							 | 
						                    past_key_values, | 
					
					
						
						| 
							 | 
						                    output_attentions, | 
					
					
						
						| 
							 | 
						                    output_router_logits, | 
					
					
						
						| 
							 | 
						                    use_cache, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                layer_outputs = decoder_layer( | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						                    position_ids=position_ids, | 
					
					
						
						| 
							 | 
						                    past_key_value=past_key_values, | 
					
					
						
						| 
							 | 
						                    output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						                    output_router_logits=output_router_logits, | 
					
					
						
						| 
							 | 
						                    use_cache=use_cache, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            hidden_states = layer_outputs[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if use_cache: | 
					
					
						
						| 
							 | 
						                next_decoder_cache = layer_outputs[2 if output_attentions else 1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if output_attentions: | 
					
					
						
						| 
							 | 
						                all_self_attns += (layer_outputs[1],) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if output_router_logits: | 
					
					
						
						| 
							 | 
						                all_router_logits += (layer_outputs[-1],) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.final_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if output_hidden_states: | 
					
					
						
						| 
							 | 
						            all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        next_cache = None | 
					
					
						
						| 
							 | 
						        if use_cache: | 
					
					
						
						| 
							 | 
						            next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            return tuple( | 
					
					
						
						| 
							 | 
						                v | 
					
					
						
						| 
							 | 
						                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] | 
					
					
						
						| 
							 | 
						                if v is not None | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        return MoeModelOutputWithPast( | 
					
					
						
						| 
							 | 
						            last_hidden_state=hidden_states, | 
					
					
						
						| 
							 | 
						            past_key_values=next_cache, | 
					
					
						
						| 
							 | 
						            hidden_states=all_hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=all_self_attns, | 
					
					
						
						| 
							 | 
						            router_logits=all_router_logits, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class JambaForCausalLM(JambaPreTrainedModel): | 
					
					
						
						| 
							 | 
						    _tied_weights_keys = ["lm_head.weight"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: JambaConfig): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.model = JambaModel(config) | 
					
					
						
						| 
							 | 
						        self.vocab_size = config.vocab_size | 
					
					
						
						| 
							 | 
						        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.router_aux_loss_coef = config.router_aux_loss_coef | 
					
					
						
						| 
							 | 
						        self.num_experts = config.num_experts | 
					
					
						
						| 
							 | 
						        self.num_experts_per_tok = config.num_experts_per_tok | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_output_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.lm_head | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_output_embeddings(self, new_embeddings): | 
					
					
						
						| 
							 | 
						        self.lm_head = new_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_decoder(self, decoder): | 
					
					
						
						| 
							 | 
						        self.model = decoder | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_decoder(self): | 
					
					
						
						| 
							 | 
						        return self.model | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            input_ids: torch.LongTensor = None, | 
					
					
						
						| 
							 | 
						            attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						            position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						            inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						            labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            output_router_logits: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            calc_logits_for_entire_prompt: Optional[bool] = True, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, MoeCausalLMOutputWithPast]: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						                Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
					
						
						| 
							 | 
						                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
					
						
						| 
							 | 
						                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            calc_logits_for_entire_prompt (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to calculate the logits for the entire prompt, or just the last token. Only last token | 
					
					
						
						| 
							 | 
						                logits are needed for generation, and calculating them only for that token can save memory, | 
					
					
						
						| 
							 | 
						                which becomes pretty significant for long sequences. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						        ```""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_router_logits = ( | 
					
					
						
						| 
							 | 
						            output_router_logits if output_router_logits is not None else self.config.output_router_logits | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        outputs = self.model( | 
					
					
						
						| 
							 | 
						            input_ids=input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            output_router_logits=output_router_logits, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = outputs[0] | 
					
					
						
						| 
							 | 
						        if calc_logits_for_entire_prompt: | 
					
					
						
						| 
							 | 
						            logits = self.lm_head(hidden_states) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            logits = self.lm_head(hidden_states[..., -1:, :]) | 
					
					
						
						| 
							 | 
						        logits = logits.float() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            shift_logits = logits[..., :-1, :].contiguous() | 
					
					
						
						| 
							 | 
						            shift_labels = labels[..., 1:].contiguous() | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            loss_fct = CrossEntropyLoss() | 
					
					
						
						| 
							 | 
						            shift_logits = shift_logits.view(-1, self.config.vocab_size) | 
					
					
						
						| 
							 | 
						            shift_labels = shift_labels.view(-1) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            shift_labels = shift_labels.to(shift_logits.device) | 
					
					
						
						| 
							 | 
						            loss = loss_fct(shift_logits, shift_labels) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        aux_loss = None | 
					
					
						
						| 
							 | 
						        if output_router_logits: | 
					
					
						
						| 
							 | 
						            aux_loss = load_balancing_loss_func( | 
					
					
						
						| 
							 | 
						                outputs.router_logits if return_dict else outputs[-1], | 
					
					
						
						| 
							 | 
						                self.num_experts, | 
					
					
						
						| 
							 | 
						                self.num_experts_per_tok, | 
					
					
						
						| 
							 | 
						                attention_mask, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            if labels is not None: | 
					
					
						
						| 
							 | 
						                loss += self.router_aux_loss_coef * aux_loss.to(loss.device)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            output = (logits,) + outputs[1:] | 
					
					
						
						| 
							 | 
						            if output_router_logits: | 
					
					
						
						| 
							 | 
						                output = (aux_loss,) + output | 
					
					
						
						| 
							 | 
						            return (loss,) + output if loss is not None else output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return MoeCausalLMOutputWithPast( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            aux_loss=aux_loss, | 
					
					
						
						| 
							 | 
						            logits=logits, | 
					
					
						
						| 
							 | 
						            past_key_values=outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=outputs.attentions, | 
					
					
						
						| 
							 | 
						            router_logits=outputs.router_logits, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_inputs_for_generation( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            input_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=None, | 
					
					
						
						| 
							 | 
						            attention_mask=None, | 
					
					
						
						| 
							 | 
						            inputs_embeds=None, | 
					
					
						
						| 
							 | 
						            output_router_logits=False, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if past_key_values is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if isinstance(past_key_values, Tuple): | 
					
					
						
						| 
							 | 
						                if past_key_values[self.model._mamba_layer_index][0].shape[2] > 1: | 
					
					
						
						| 
							 | 
						                    past_key_values = self._convert_to_jamba_cache(past_key_values) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if isinstance(past_key_values, Cache): | 
					
					
						
						| 
							 | 
						                if not isinstance(past_key_values, HybridMambaAttentionDynamicCache): | 
					
					
						
						| 
							 | 
						                    past_key_values = HybridMambaAttentionDynamicCache.from_legacy_cache( | 
					
					
						
						| 
							 | 
						                        past_key_values.to_legacy_cache() | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                cache_length = past_key_values.get_seq_length() | 
					
					
						
						| 
							 | 
						                past_length = past_key_values.seen_tokens | 
					
					
						
						| 
							 | 
						                max_cache_length = past_key_values.get_max_length() | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                cache_length = past_length = past_key_values[self.model._attn_layer_index][0].shape[2] | 
					
					
						
						| 
							 | 
						                max_cache_length = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | 
					
					
						
						| 
							 | 
						                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            elif past_length < input_ids.shape[1]: | 
					
					
						
						| 
							 | 
						                input_ids = input_ids[:, past_length:] | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if ( | 
					
					
						
						| 
							 | 
						                    max_cache_length is not None | 
					
					
						
						| 
							 | 
						                    and attention_mask is not None | 
					
					
						
						| 
							 | 
						                    and cache_length + input_ids.shape[1] > max_cache_length | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                attention_mask = attention_mask[:, -max_cache_length:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        position_ids = kwargs.get("position_ids", None) | 
					
					
						
						| 
							 | 
						        if attention_mask is not None and position_ids is None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
					
						
						| 
							 | 
						            position_ids.masked_fill_(attention_mask == 0, 1) | 
					
					
						
						| 
							 | 
						            if past_key_values: | 
					
					
						
						| 
							 | 
						                position_ids = position_ids[:, -input_ids.shape[1] :] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if inputs_embeds is not None and past_key_values is None: | 
					
					
						
						| 
							 | 
						            model_inputs = {"inputs_embeds": inputs_embeds} | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            model_inputs = {"input_ids": input_ids} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        model_inputs.update( | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "position_ids": position_ids, | 
					
					
						
						| 
							 | 
						                "past_key_values": past_key_values, | 
					
					
						
						| 
							 | 
						                "use_cache": kwargs.get("use_cache"), | 
					
					
						
						| 
							 | 
						                "attention_mask": attention_mask, | 
					
					
						
						| 
							 | 
						                "output_router_logits": output_router_logits, | 
					
					
						
						| 
							 | 
						                "calc_logits_for_entire_prompt": self.config.calc_logits_for_entire_prompt, | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return model_inputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod | 
					
					
						
						| 
							 | 
						    def _reorder_cache(past_key_values, beam_idx): | 
					
					
						
						| 
							 | 
						        reordered_past = () | 
					
					
						
						| 
							 | 
						        for layer_past in past_key_values: | 
					
					
						
						| 
							 | 
						            reordered_past += ( | 
					
					
						
						| 
							 | 
						                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        return reordered_past | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    The Jamba Model with a sequence classification head on top (linear layer). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    [`JambaForSequenceClassification`] uses the last token in order to do the classification, as other causal models | 
					
					
						
						| 
							 | 
						    (e.g. GPT-2) do. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Since it does classification on the last token, it requires to know the position of the last token. If a | 
					
					
						
						| 
							 | 
						    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | 
					
					
						
						| 
							 | 
						    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | 
					
					
						
						| 
							 | 
						    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | 
					
					
						
						| 
							 | 
						    each row of the batch). | 
					
					
						
						| 
							 | 
						    """, | 
					
					
						
						| 
							 | 
						    JAMBA_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class JambaForSequenceClassification(JambaPreTrainedModel): | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.num_labels = config.num_labels | 
					
					
						
						| 
							 | 
						        self.model = JambaModel(config) | 
					
					
						
						| 
							 | 
						        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            input_ids: torch.LongTensor = None, | 
					
					
						
						| 
							 | 
						            attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						            position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						            inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						            labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						            use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						            return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
					
						
						| 
							 | 
						            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
					
						
						| 
							 | 
						            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
					
						
						| 
							 | 
						            `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        transformer_outputs = self.model( | 
					
					
						
						| 
							 | 
						            input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        hidden_states = transformer_outputs[0] | 
					
					
						
						| 
							 | 
						        logits = self.score(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if input_ids is not None: | 
					
					
						
						| 
							 | 
						            batch_size = input_ids.shape[0] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch_size = inputs_embeds.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.config.pad_token_id is None and batch_size != 1: | 
					
					
						
						| 
							 | 
						            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | 
					
					
						
						| 
							 | 
						        if self.config.pad_token_id is None: | 
					
					
						
						| 
							 | 
						            sequence_lengths = -1 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            if input_ids is not None: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | 
					
					
						
						| 
							 | 
						                sequence_lengths = sequence_lengths % input_ids.shape[-1] | 
					
					
						
						| 
							 | 
						                sequence_lengths = sequence_lengths.to(logits.device) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                sequence_lengths = -1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						            labels = labels.to(logits.device) | 
					
					
						
						| 
							 | 
						            if self.config.problem_type is None: | 
					
					
						
						| 
							 | 
						                if self.num_labels == 1: | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "regression" | 
					
					
						
						| 
							 | 
						                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "single_label_classification" | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "multi_label_classification" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.config.problem_type == "regression": | 
					
					
						
						| 
							 | 
						                loss_fct = MSELoss() | 
					
					
						
						| 
							 | 
						                if self.num_labels == 1: | 
					
					
						
						| 
							 | 
						                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    loss = loss_fct(pooled_logits, labels) | 
					
					
						
						| 
							 | 
						            elif self.config.problem_type == "single_label_classification": | 
					
					
						
						| 
							 | 
						                loss_fct = CrossEntropyLoss() | 
					
					
						
						| 
							 | 
						                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | 
					
					
						
						| 
							 | 
						            elif self.config.problem_type == "multi_label_classification": | 
					
					
						
						| 
							 | 
						                loss_fct = BCEWithLogitsLoss() | 
					
					
						
						| 
							 | 
						                loss = loss_fct(pooled_logits, labels) | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            output = (pooled_logits,) + transformer_outputs[1:] | 
					
					
						
						| 
							 | 
						            return ((loss,) + output) if loss is not None else output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return SequenceClassifierOutputWithPast( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            logits=pooled_logits, | 
					
					
						
						| 
							 | 
						            past_key_values=transformer_outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=transformer_outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=transformer_outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 |