|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ Jamba model configuration""" | 
					
						
						|  | import math | 
					
						
						|  |  | 
					
						
						|  | from transformers.configuration_utils import PretrainedConfig | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class JambaConfig(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`JambaModel`]. It is used to instantiate a | 
					
						
						|  | Jamba model according to the specified arguments, defining the model architecture. Instantiating a configuration | 
					
						
						|  | with the defaults will yield a similar configuration to that of the jamba-small architecture. | 
					
						
						|  |  | 
					
						
						|  | [ai21labs/jamba-small](https://huggingface.co/ai21labs/Jamba-v0.1) | 
					
						
						|  |  | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_size (`int`, *optional*, defaults to 65536): | 
					
						
						|  | Vocabulary size of the Jamba model. Defines the number of different tokens that can be represented by the | 
					
						
						|  | `inputs_ids` passed when calling [`JambaModel`] | 
					
						
						|  | tie_word_embeddings (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the | 
					
						
						|  | model has a output word embedding layer. | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 4096): | 
					
						
						|  | Dimension of the hidden representations. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 14336): | 
					
						
						|  | Dimension of the MLP representations. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of hidden layers in the Transformer encoder. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer encoder. | 
					
						
						|  | num_key_value_heads (`int`, *optional*, defaults to 8): | 
					
						
						|  | This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
						
						|  | `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
						
						|  | `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
						
						|  | converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
						
						|  | by meanpooling all the original heads within that group. For more details checkout [this | 
					
						
						|  | paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. | 
					
						
						|  | hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | 
					
						
						|  | The non-linear activation function (function or string) in the decoder. | 
					
						
						|  | initializer_range (`float`, *optional*, defaults to 0.02): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
						
						|  | rms_norm_eps (`float`, *optional*, defaults to 1e-06): | 
					
						
						|  | The epsilon used by the rms normalization layers. | 
					
						
						|  | use_cache (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
						
						|  | relevant if `config.is_decoder=True`. | 
					
						
						|  | calc_logits_for_entire_prompt (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to calculate logits for entire prompt during generation. If `False`, only the logits of the | 
					
						
						|  | last prompt token will be calculated, which are the only logits needed for generation. For long sequences, | 
					
						
						|  | the logits for the entire sequence may use a lot of memory so setting `calc_logits_for_entire_prompt=False` | 
					
						
						|  | will reduce memory footprint significantly. | 
					
						
						|  | Note: some generation features may not be available if this is set to `False`. | 
					
						
						|  | output_router_logits (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not the router logits should be returned by the model. Enabling this will also | 
					
						
						|  | allow the model to output the auxiliary loss. See [here]() for more details | 
					
						
						|  | router_aux_loss_coef (`float`, *optional*, defaults to 0.001): | 
					
						
						|  | The aux loss factor for the total loss. | 
					
						
						|  | pad_token_id (`int`, *optional*, defaults to 0): | 
					
						
						|  | The id of the padding token. | 
					
						
						|  | bos_token_id (`int`, *optional*, defaults to 1): | 
					
						
						|  | The id of the "beginning-of-sequence" token. | 
					
						
						|  | eos_token_id (`int`, *optional*, defaults to 2): | 
					
						
						|  | The id of the "end-of-sequence" token. | 
					
						
						|  | sliding_window (`int`, *optional*): | 
					
						
						|  | Sliding window attention window size. If not specified, will default to `None`. | 
					
						
						|  | n_ctx (`int`, *optional*, defaults to 262144): | 
					
						
						|  | This value doesn't have any real effect. The maximum sequence length that this model is intended to be | 
					
						
						|  | used with. It can be used with longer sequences, but performance may degrade. | 
					
						
						|  | attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | The dropout ratio for the attention probabilities. | 
					
						
						|  | num_experts_per_tok (`int`, *optional*, defaults to 2): | 
					
						
						|  | The number of experts to root per-token, can be also interpreted as the `top-p` routing | 
					
						
						|  | parameter | 
					
						
						|  | num_experts (`int`, *optional*, defaults to 16): | 
					
						
						|  | Number of experts per Sparse MLP layer. | 
					
						
						|  | expert_layer_period (`int`, *optional*, defaults to 2): | 
					
						
						|  | Once in this many layers, we will have an expert layer | 
					
						
						|  | expert_layer_offset (`int`, *optional*, defaults to 1): | 
					
						
						|  | The first layer index that contains an expert mlp layer | 
					
						
						|  | attn_layer_period (`int`, *optional*, defaults to 8): | 
					
						
						|  | Once in this many layers, we will have a vanilla attention layer | 
					
						
						|  | attn_layer_offset (`int`, *optional*, defaults to 4): | 
					
						
						|  | The first layer index that contains a vanilla attention mlp layer | 
					
						
						|  | use_mamba_kernels (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and | 
					
						
						|  | `causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if | 
					
						
						|  | `True` and kernels are not available | 
					
						
						|  | mamba_d_state (`int`, *optional*, defaults to 16): | 
					
						
						|  | The dimension the mamba state space latents | 
					
						
						|  | mamba_d_conv (`int`, *optional*, defaults to 4): | 
					
						
						|  | The size of the mamba convolution kernel | 
					
						
						|  | mamba_expand (`int`, *optional*, defaults to 2): | 
					
						
						|  | Expanding factor (relative to hidden_size) used to determine the mamba intermediate size | 
					
						
						|  | mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): | 
					
						
						|  | Rank of the the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` | 
					
						
						|  | mamba_conv_bias (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block. | 
					
						
						|  | mamba_proj_bias (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block | 
					
						
						|  | mamba_inner_layernorms (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Flag indicating whether or not to apply layernorms to internal mamba activations | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_type = "jamba" | 
					
						
						|  | keys_to_ignore_at_inference = ["past_key_values"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=65536, | 
					
						
						|  | tie_word_embeddings=False, | 
					
						
						|  | hidden_size=4096, | 
					
						
						|  | intermediate_size=14336, | 
					
						
						|  | num_hidden_layers=32, | 
					
						
						|  | num_attention_heads=32, | 
					
						
						|  | num_key_value_heads=8, | 
					
						
						|  | hidden_act="silu", | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | rms_norm_eps=1e-6, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | calc_logits_for_entire_prompt=False, | 
					
						
						|  | output_router_logits=False, | 
					
						
						|  | router_aux_loss_coef=0.001, | 
					
						
						|  | pad_token_id=0, | 
					
						
						|  | bos_token_id=1, | 
					
						
						|  | eos_token_id=2, | 
					
						
						|  | sliding_window=None, | 
					
						
						|  | n_ctx=262144, | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | num_experts_per_tok=2, | 
					
						
						|  | num_experts=16, | 
					
						
						|  | expert_layer_period=2, | 
					
						
						|  | expert_layer_offset=1, | 
					
						
						|  | attn_layer_period=8, | 
					
						
						|  | attn_layer_offset=4, | 
					
						
						|  | use_mamba_kernels=True, | 
					
						
						|  | mamba_d_state=16, | 
					
						
						|  | mamba_d_conv=4, | 
					
						
						|  | mamba_expand=2, | 
					
						
						|  | mamba_dt_rank="auto", | 
					
						
						|  | mamba_conv_bias=True, | 
					
						
						|  | mamba_proj_bias=False, | 
					
						
						|  | mamba_inner_layernorms=True, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.tie_word_embeddings = tie_word_embeddings | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.sliding_window = sliding_window | 
					
						
						|  | self.n_ctx = n_ctx | 
					
						
						|  | self.attention_dropout = attention_dropout | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if num_key_value_heads is None: | 
					
						
						|  | num_key_value_heads = num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | self.num_key_value_heads = num_key_value_heads | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.rms_norm_eps = rms_norm_eps | 
					
						
						|  |  | 
					
						
						|  | self.use_cache = use_cache | 
					
						
						|  | self.calc_logits_for_entire_prompt = calc_logits_for_entire_prompt | 
					
						
						|  | self.output_router_logits = output_router_logits | 
					
						
						|  | self.router_aux_loss_coef = router_aux_loss_coef | 
					
						
						|  |  | 
					
						
						|  | self.num_experts_per_tok = num_experts_per_tok | 
					
						
						|  | self.num_experts = num_experts | 
					
						
						|  | self.expert_layer_period = expert_layer_period | 
					
						
						|  | self.expert_layer_offset = expert_layer_offset | 
					
						
						|  | self.attn_layer_period = attn_layer_period | 
					
						
						|  | self.attn_layer_offset = attn_layer_offset | 
					
						
						|  |  | 
					
						
						|  | self.use_mamba_kernels = use_mamba_kernels | 
					
						
						|  | self.mamba_d_state = mamba_d_state | 
					
						
						|  | self.mamba_d_conv = mamba_d_conv | 
					
						
						|  | self.mamba_expand = mamba_expand | 
					
						
						|  | self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank | 
					
						
						|  | self.mamba_conv_bias = mamba_conv_bias | 
					
						
						|  | self.mamba_proj_bias = mamba_proj_bias | 
					
						
						|  | self.mamba_inner_layernorms = mamba_inner_layernorms | 
					
						
						|  |  | 
					
						
						|  | super().__init__( | 
					
						
						|  | pad_token_id=pad_token_id, | 
					
						
						|  | bos_token_id=bos_token_id, | 
					
						
						|  | eos_token_id=eos_token_id, | 
					
						
						|  | tie_word_embeddings=tie_word_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  |