ajc2195 commited on
Commit
3046eaf
·
verified ·
1 Parent(s): 3e50c62

Add comprehensive model card

Browse files
Files changed (1) hide show
  1. README.md +146 -178
README.md CHANGED
@@ -1,199 +1,167 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
 
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
 
 
 
 
 
198
 
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: microsoft/DialoGPT-medium
4
+ tags:
5
+ - conversational
6
+ - national-parks
7
+ - travel
8
+ - recreation
9
+ - parks
10
+ - outdoor
11
+ - assistant
12
+ - fine-tuned
13
+ - camping
14
+ - hiking
15
+ language:
16
+ - en
17
  library_name: transformers
18
+ pipeline_tag: text-generation
19
+ model_type: gpt2
20
+ datasets:
21
+ - custom
22
+ widget:
23
+ - text: "Human: What should I pack for Yellowstone?
24
+ Assistant:"
25
+ example_title: "Packing advice"
26
+ - text: "Human: When is the best time to visit Zion?
27
+ Assistant:"
28
+ example_title: "Visit timing"
29
+ - text: "Human: How do I make campground reservations?
30
+ Assistant:"
31
+ example_title: "Reservations help"
32
  ---
33
 
34
+ # Parks LLM v2 - US Parks Assistant 🏞️
35
+
36
+ A conversational AI model fine-tuned to help with US national parks, state parks, and recreation areas. This is an improved version with better training data and fixed attention mask handling.
37
+
38
+ ## Model Description
39
+
40
+ Parks LLM v2 is fine-tuned from microsoft/DialoGPT-medium on a curated dataset of park-related conversations. It provides helpful information about:
41
+
42
+ - 🎒 **Packing and Preparation**: What to bring for different park environments
43
+ - 📅 **Visit Planning**: Best times to visit, crowd levels, weather considerations
44
+ - 🏕️ **Camping & Reservations**: Booking guidance and accommodation options
45
+ - 👨‍👩‍👧‍👦 **Family Travel**: Family-friendly park recommendations and activities
46
+ - 💰 **Budget Tips**: Cost-saving strategies and fee information
47
+ - 🐻 **Safety Guidance**: Wildlife safety and Leave No Trace principles
48
+ - 🥾 **Activities**: Hiking, camping, and outdoor activity recommendations
49
+
50
+ ## Quick Start
51
+
52
+ ```python
53
+ from transformers import AutoTokenizer, AutoModelForCausalLM
54
+
55
+ # Load the model
56
+ tokenizer = AutoTokenizer.from_pretrained("ajc2195/parks-llm-v2")
57
+ model = AutoModelForCausalLM.from_pretrained("ajc2195/parks-llm-v2")
58
+
59
+ def ask_parks_assistant(question):
60
+ prompt = f"Human: {question}\nAssistant:"
61
+ inputs = tokenizer(prompt, return_tensors="pt", padding=True)
62
+
63
+ with torch.no_grad():
64
+ outputs = model.generate(
65
+ inputs['input_ids'],
66
+ attention_mask=inputs['attention_mask'],
67
+ max_new_tokens=80,
68
+ temperature=0.7,
69
+ do_sample=True,
70
+ repetition_penalty=1.2,
71
+ pad_token_id=tokenizer.pad_token_id,
72
+ eos_token_id=tokenizer.eos_token_id
73
+ )
74
+
75
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
76
+ return response.split("Assistant:")[-1].strip()
77
+
78
+ # Example usage
79
+ answer = ask_parks_assistant("What should I pack for desert parks?")
80
+ print(answer)
81
+ ```
82
+
83
+ ## Pipeline Usage
84
+
85
+ ```python
86
+ from transformers import pipeline
87
+
88
+ parks_assistant = pipeline(
89
+ "text-generation",
90
+ model="ajc2195/parks-llm-v2",
91
+ tokenizer="ajc2195/parks-llm-v2"
92
+ )
93
+
94
+ response = parks_assistant(
95
+ "Human: What's the best time to visit Yellowstone?\nAssistant:",
96
+ max_new_tokens=60,
97
+ temperature=0.7,
98
+ do_sample=True,
99
+ repetition_penalty=1.2
100
+ )
101
+ ```
102
+
103
+ ## Example Conversations
104
+
105
+ **Q: What should I pack for Yellowstone?**
106
+ A: For Yellowstone, pack layers for changing weather, waterproof jacket, hiking boots, bear spray, sunscreen, hat, and warm clothes for evenings. Don't forget your camera and binoculars for wildlife viewing!
107
+
108
+ **Q: When is the best time to visit Zion?**
109
+ A: The best time to visit Zion is spring (March-May) and fall (September-November) when temperatures are mild and crowds are smaller. Summer can be very hot, while winter may have snow at higher elevations.
110
+
111
+ **Q: How do I make campground reservations?**
112
+ A: Make reservations at recreation.gov up to 5 months in advance. Popular campgrounds fill quickly, so book early. Some sites are first-come, first-served, arriving early in the morning is recommended.
113
 
114
  ## Model Details
115
 
116
+ - **Base Model**: microsoft/DialoGPT-medium
117
+ - **Training Data**: 15 high-quality park conversation examples
118
+ - **Training Method**: Fine-tuning with improved hyperparameters
119
+ - **Specialization**: US National Parks and recreation areas
120
+ - **Version**: 2.0 (improved from original parks-llm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
 
122
+ ## Improvements in v2
123
 
124
+ - ✅ Fixed attention mask warnings
125
+ - ✅ Better training data diversity
126
+ - ✅ Improved repetition penalty
127
+ - ✅ Proper pad token handling
128
+ - ✅ Enhanced generation parameters
129
 
130
+ ## Usage Tips
131
 
132
+ - Use the conversation format: "Human: [question]\nAssistant:"
133
+ - Include `attention_mask` in generation for best results
134
+ - Set `repetition_penalty=1.2` to avoid repetitive outputs
135
+ - Recommended `temperature=0.7` for good balance of coherence and variety
136
 
137
+ ## Limitations
138
 
139
+ - Focuses primarily on US parks and recreation areas
140
+ - Provides general guidance - always verify with official park sources
141
+ - Not a substitute for real-time park information, alerts, or conditions
142
+ - Training data is limited - may not cover all park scenarios
143
 
144
+ ## Ethical Considerations
145
 
146
+ - This model should be used as a helpful assistant, not a replacement for official park information
147
+ - Always check current park conditions, alerts, and regulations before traveling
148
+ - Be aware that park policies and conditions change frequently
149
 
150
+ ## License
151
 
152
+ Apache 2.0
153
 
154
+ ## Citation
155
 
156
+ If you use this model, please cite:
157
 
158
+ ```
159
+ @misc{parks-llm-v2,
160
+ title={Parks LLM v2: Conversational AI for US Parks and Recreation},
161
+ author={ajc2195},
162
+ year={2025},
163
+ url={https://huggingface.co/ajc2195/parks-llm-v2}
164
+ }
165
+ ```
166
 
167
+ Built with ❤️ for park enthusiasts and outdoor adventurers!