File size: 11,337 Bytes
ff5e4ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, List, Tuple

import torch

from diffusers.configuration_utils import FrozenDict
from diffusers.guiders import ClassifierFreeGuidance
from diffusers.models import AutoModel
from diffusers.schedulers import UniPCMultistepScheduler
from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.modular_pipelines import (
    BlockState,
    LoopSequentialPipelineBlocks,
    ModularPipelineBlocks,
    PipelineState,
    ModularPipeline,
)
from diffusers.modular_pipelines.modular_pipeline_utils import (
    ComponentSpec,
    InputParam,
    OutputParam,
)


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class WanRTStreamingLoopDenoiser(ModularPipelineBlocks):
    model_name = "WanRTStreaming"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [ComponentSpec("transformer", AutoModel)]

    @property
    def description(self) -> str:
        return (
            "Step within the denoising loop that denoise the latents with guidance. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `WanRTStreamingDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[Tuple[str, Any]]:
        return [
            InputParam("attention_kwargs"),
            InputParam("block_idx"),
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
            InputParam(
                "prompt_embeds",
                required=True,
                type_hint=torch.Tensor,
            ),
            InputParam(
                "kv_cache",
                required=True,
                type_hint=torch.Tensor,
            ),
            InputParam(
                "crossattn_cache",
                required=True,
                type_hint=torch.Tensor,
            ),
            InputParam(
                "current_start_frame",
                required=True,
                type_hint=torch.Tensor,
            ),
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                default=4,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
                kwargs_type="guider_input_fields",
                description=(
                    "All conditional model inputs that need to be prepared with guider. "
                    "It should contain prompt_embeds/negative_prompt_embeds. "
                    "Please add `kwargs_type=guider_input_fields` to their parameter spec (`OutputParam`) when they are created and added to the pipeline state"
                ),
            ),
        ]

    @torch.no_grad()
    def __call__(
        self,
        components: ModularPipeline,
        block_state: BlockState,
        i: int,
        t: torch.Tensor,
    ) -> PipelineState:
        start_frame = min(
            block_state.current_start_frame, components.config.kv_cache_num_frames
        )

        block_state.noise_pred = components.transformer(
            x=block_state.latents,
            t=t.expand(block_state.latents.shape[0], block_state.num_frames_per_block),
            context=block_state.prompt_embeds,
            kv_cache=block_state.kv_cache,
            seq_len=components.config.seq_length,
            crossattn_cache=block_state.crossattn_cache,
            current_start=start_frame * components.config.frame_seq_length,
            cache_start=start_frame * components.config.frame_seq_length,
        )

        return components, block_state


class WanRTStreamingLoopAfterDenoiser(ModularPipelineBlocks):
    model_name = "WanRTStreaming"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec("scheduler", UniPCMultistepScheduler),
        ]

    @property
    def description(self) -> str:
        return (
            "step within the denoising loop that update the latents. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `WanRTStreamingDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[Tuple[str, Any]]:
        return []

    @property
    def intermediate_inputs(self) -> List[str]:
        return [
            InputParam("generator"),
            InputParam("block_id"),
        ]

    @property
    def intermediate_outputs(self) -> List[OutputParam]:
        return [
            OutputParam(
                "latents", type_hint=torch.Tensor, description="The denoised latents"
            )
        ]

    @torch.no_grad()
    def __call__(
        self,
        components: ModularPipeline,
        block_state: BlockState,
        i: int,
        t: torch.Tensor,
    ):
        # Perform scheduler step using the predicted output
        latents_dtype = block_state.latents.dtype
        timesteps = block_state.all_timesteps
        sigmas = block_state.sigmas

        timestep_id = torch.argmin((timesteps - t).abs())
        sigma_t = sigmas[timestep_id]

        # Perform computation in double precision, then convert back once
        latents = (
            block_state.latents.double()
            - sigma_t.double() * block_state.noise_pred.double()
        ).to(latents_dtype)

        block_state.latents = latents

        return components, block_state


class WanRTStreamingDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
    model_name = "WanRTStreaming"

    @property
    def description(self) -> str:
        return (
            "Streaming denoising loop that processes a single block with persistent KV cache. "
            "Recomputes cache from context frames, denoises current block, and updates cache."
        )

    def add_noise(self, components, block_state, sample, noise, timestep, index):
        timesteps = block_state.all_timesteps
        sigmas = block_state.sigmas.to(timesteps.device)

        if timestep.ndim == 2:
            timestep = timestep.flatten(0, 1)

        timestep_id = torch.argmin(
            (timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1
        )
        sigma = sigmas[timestep_id].reshape(-1, 1, 1, 1)
        sample = (
            1 - sigma.double()
        ) * sample.double() + sigma.double() * noise.double()
        sample = sample.type_as(noise)

        return sample

    @property
    def loop_inputs(self) -> List[InputParam]:
        return [
            InputParam(
                "timesteps",
                required=True,
                type_hint=torch.Tensor,
                description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
                "all_timesteps",
                required=True,
                type_hint=torch.Tensor,
                description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
                "sigmas",
                required=True,
                type_hint=torch.Tensor,
                description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam("final_latents", type_hint=torch.Tensor),
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
                "num_frames_per_block",
                required=True,
                type_hint=int,
                default=3,
            ),
            InputParam(
                "current_start_frame",
                required=True,
                type_hint=int,
            ),
            InputParam(
                "block_idx",
            ),
            InputParam(
                "generator",
            ),
        ]

    @torch.no_grad()
    def __call__(
        self, components: ModularPipeline, state: PipelineState
    ) -> PipelineState:
        block_state = self.get_block_state(state)

        for i, t in enumerate(block_state.timesteps):
            components, block_state = self.loop_step(components, block_state, i=i, t=t)
            if i < (block_state.num_inference_steps - 1):
                t1 = block_state.timesteps[i + 1]

                block_state.latents = (
                    self.add_noise(
                        components,
                        block_state,
                        block_state.latents.transpose(1, 2).squeeze(0),
                        randn_tensor(
                            block_state.latents.transpose(1, 2).squeeze(0).shape,
                            device=block_state.latents.device,
                            dtype=block_state.latents.dtype,
                            generator=block_state.generator,
                        ),
                        t1.expand(
                            block_state.latents.shape[0],
                            block_state.num_frames_per_block,
                        ),
                        i,
                    )
                    .unsqueeze(0)
                    .transpose(1, 2)
                )

        # Update the state
        block_state.final_latents[
            :,
            :,
            block_state.current_start_frame : block_state.current_start_frame
            + block_state.num_frames_per_block,
        ] = block_state.latents

        self.set_block_state(state, block_state)

        return components, state


class WanRTStreamingDenoiseStep(WanRTStreamingDenoiseLoopWrapper):
    block_classes = [
        WanRTStreamingLoopDenoiser,
        WanRTStreamingLoopAfterDenoiser,
    ]
    block_names = ["denoiser", "after_denoiser"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `WanRTStreamingDenoiseLoopWrapper.__call__` method \n"
            "At each iteration, it runs blocks defined in `sub_blocks` sequencially:\n"
            " - `WanRTStreamingLoopDenoiser`\n"
            " - `WanRTStreamingLoopAfterDenoiser`\n"
            "This block supports both text2vid tasks."
        )