#!/usr/bin/env python3 # -*- coding: utf-8 -*- import joblib import numpy as np from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Load the model from disk model = joblib.load('isolation_forest.joblib') # Set the random seed random_seed = 0 np.random.seed(random_seed) # Load the dataset dataset_name = "cardiotocography" dataset = fetch_openml(name=dataset_name, version=1, as_frame=False) X, y = dataset.data, dataset.target s = y == "3" y = s.astype(int) # Split the dataset into training and testing sets _, X_test, _, y_test = train_test_split(X, y, test_size=0.25, random_state=random_seed) print(f'X_test:\n{X_test[0]}') print(f'y_test:\n{y_test[0]}') # Use the model to make predictions on the test data y_pred = model.predict(X_test) # Mapping 1->0 and -1->1 y_pred = np.where(y_pred == 1, 0, 1) print(f'y_pred:\n{y_pred[0]}') # Score the model using accuracy classification score acc = accuracy_score(y_test, y_pred) print(f'Accuracy classification score: {acc}')