File size: 8,342 Bytes
53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 5421bea 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 5421bea 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 01c6cf4 05733d4 01c6cf4 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 e015389 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 53676d5 05733d4 5421bea 05733d4 5421bea 05733d4 5421bea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
---
license: mit
base_model: unsloth/gemma-3-12b-it-qat-bnb-4bit
tags:
- kubernetes
- devops
- infrastructure
- k8s
- turkish
- gemma
- unsloth
- lora
datasets:
- mcipriano/stackoverflow-kubernetes-questions
- Szaid3680/Devops
- ahmedgongi/Devops_LLM
- HelloBoieeee/kubernetes_config
- sidddddddddddd/kubernetes-with-ood
- peterpanpan/stackoverflow-kubernetes-questions
- dereklck/kubernetes_operator_3b_1.5k
- dereklck/kubernetes_cli_dataset_20k
library_name: peft
language:
- en
- tr
---
# Kubernetes AI - Gemma 3 12B LoRA Adapters
Fine-tuned Gemma 3 12B model specialized for answering Kubernetes questions in Turkish.
## Model Description
This model consists of LoRA adapters fine-tuned on `unsloth/gemma-3-12b-it-qat-bnb-4bit` using a comprehensive dataset of Kubernetes documentation, Stack Overflow questions, and DevOps scenarios.
**Primary Purpose:** Answer Kubernetes-related questions in Turkish language.
### Use Cases
- Kubernetes cluster management and troubleshooting
- YAML configuration generation and validation
- kubectl command assistance
- Debugging pod, service, and deployment issues
- Kubernetes best practices and concepts
- DevOps workflow optimization
- **Turkish language Kubernetes Q&A**
## Quick Start
### Loading the Model
```python
from unsloth import FastLanguageModel
from peft import PeftModel
import torch
# Load base Gemma 3 12B model
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="unsloth/gemma-3-12b-it-qat-bnb-4bit",
max_seq_length=2048,
dtype=None,
load_in_4bit=True, # Use 4-bit quantization to fit in GPU memory
)
# Load Kubernetes AI LoRA adapters
model = PeftModel.from_pretrained(
model,
"aciklab/kubernetes-ai"
)
# Enable inference mode
FastLanguageModel.for_inference(model)
# Example usage (Turkish question)
messages = [
{"role": "user", "content": "Kubernetes'te 3 replikaya sahip bir deployment nasıl oluştururum?"}
]
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
).to("cuda")
outputs = model.generate(
input_ids=inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
## Example Questions
### Turkish Examples
```python
# Deployment creation
"Node.js uygulaması için 3 replika, sağlık kontrolleri ve kaynak limitleri olan bir Kubernetes deployment oluştur."
# Troubleshooting
"Pod'um CrashLoopBackOff durumunda. Yaygın nedenleri nelerdir ve nasıl debug ederim?"
# kubectl commands
"Production namespace'indeki çalışmayan tüm pod'ları gösteren kubectl komutunu yaz."
# Best practices
"Kubernetes'te container güvenliği için en iyi uygulamalar nelerdir?"
# Service creation
"LoadBalancer tipinde bir Kubernetes servisi nasıl yapılandırılır?"
```
### English Examples
```python
"How do I create a Kubernetes deployment with 3 replicas?"
"What are the common causes of CrashLoopBackOff?"
"Show me kubectl command to get all pods in production namespace."
```
## Training Dataset
The model was trained on **~157,000 examples** from multiple high-quality Kubernetes and DevOps datasets:
| Dataset | Count | Description |
|---------|----------|-------------|
| **Kubernetes Official Documentation** | | |
| - Concepts | 2,700 | Core Kubernetes concepts |
| - Kubectl Reference | 600 | kubectl command documentation |
| - Setup Guides | 430 | Installation and setup |
| - Tasks | 4,300 | Practical task guides |
| - Tutorials | 880 | Step-by-step tutorials |
| **Stack Overflow** | | |
| mcipriano/stackoverflow-kubernetes-questions | 30,000 | Kubernetes Q&A |
| peterpanpan/stackoverflow-kubernetes-questions | 22,000 | Additional Kubernetes Q&A |
| **DevOps Datasets** | | |
| Szaid3680/Devops | 42,000 | General DevOps content |
| ahmedgongi/Devops_LLM | 20,500 | Kubernetes-filtered DevOps (from 140k) |
| **Configuration & Operations** | | |
| HelloBoieeee/kubernetes_config | 10,000 | Kubernetes configurations |
| sidddddddddddd/kubernetes-with-ood | 6,000 | Kubernetes scenarios (incl. Turkish translations) |
| dereklck/kubernetes_cli_dataset_20k | 19,000 | kubectl CLI examples |
| dereklck/kubernetes_operator_3b_1.5k | 1,800 | Kubernetes operator patterns |
**Total Training Examples: ~157,210**
## Training Details
- **Base Model**: unsloth/gemma-3-12b-it-qat-bnb-4bit
- **Method**: LoRA (Low-Rank Adaptation)
- **Framework**: Unsloth
- **LoRA Rank**: 8
- **Target Modules**: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- **Training Checkpoint**: checkpoint-8175
- **Max Sequence Length**: 1024 tokens
- **Training Time**: 28 hours
- **Hardware**: NVIDIA GeForce RTX 5070 12GB
## Hardware Requirements
- **Minimum VRAM**: 12GB (with 4-bit quantization)
- **Recommended VRAM**: 24GB (for faster inference)
- **CPU RAM**: 32GB+
- **Training Hardware**: RTX 5070 12GB
## Limitations
- May not have information on very recent Kubernetes features released after training
- Primarily trained for **Turkish language** responses, though it can handle English queries
- Best suited for technical Kubernetes questions; general conversation capabilities can be limited
## Performance Notes
- Trained on RTX 5070 12GB in 28 hours
- Works with 12GB VRAM using 4-bit quantization
- Fast startup by loading only adapters without full model reload
## License
This model is released under the **MIT License**. Free to use in commercial and open-source projects.
## Acknowledgments
- Google and Unsloth team for the Gemma 3 base model
- Unsloth team for the efficient training framework
- All dataset contributors
- Kubernetes community for comprehensive documentation
- NVIDIA for RTX 5070 enabling 28-hour training
## Contact
For questions or feedback, please open an issue on the model repository.
---
**Note**: This is a LoRA adapter, not a full model. You must load it on top of `unsloth/gemma-3-12b-it-qat-bnb-4bit` to use it.
## Related Links
- [Unsloth Documentation](https://docs.unsloth.ai/)
- [Gemma Model Card](https://ai.google.dev/gemma)
- [PEFT Documentation](https://huggingface.co/docs/peft)
- [Kubernetes Documentation](https://kubernetes.io/docs/)
## Citations
### Datasets
```bibtex
@misc{stackoverflow-kubernetes-mcipriano,
author = {mcipriano},
title = {Stack Overflow Kubernetes Questions},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/mcipriano/stackoverflow-kubernetes-questions}
}
@misc{devops-szaid,
author = {Szaid3680},
title = {DevOps Dataset},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/Szaid3680/Devops}
}
@misc{devops-llm-ahmed,
author = {ahmedgongi},
title = {DevOps LLM Dataset},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/ahmedgongi/Devops_LLM}
}
@misc{kubernetes-config-hello,
author = {HelloBoieeee},
title = {Kubernetes Config Dataset},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/HelloBoieeee/kubernetes_config}
}
@misc{kubernetes-ood-sidddddddddddd,
author = {sidddddddddddd},
title = {Kubernetes with OOD Dataset},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/sidddddddddddd/kubernetes-with-ood}
}
@misc{stackoverflow-kubernetes-peter,
author = {peterpanpan},
title = {Stack Overflow Kubernetes Questions},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/peterpanpan/stackoverflow-kubernetes-questions}
}
@misc{kubernetes-operator-derek,
author = {dereklck},
title = {Kubernetes Operator Dataset},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/dereklck/kubernetes_operator_3b_1.5k}
}
@misc{kubernetes-cli-derek,
author = {dereklck},
title = {Kubernetes CLI Dataset},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/dereklck/kubernetes_cli_dataset_20k}
}
```
### Model
```bibtex
@misc{kubernetes-ai,
author = {aciklab},
title = {Kubernetes AI Turkish - Gemma 3 12B LoRA Adapters},
year = {2025},
publisher = {HuggingFace},
url = {https://huggingface.co/aciklab/kubernetes-ai},
note = {Trained on RTX 5070 12GB in 28 hours}
}
``` |