File size: 13,975 Bytes
766ea9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import argparse
import jsonlines
import json
# from deepeval.scorer import Scorer
from deepeval.models import OllamaModel
from deepeval.metrics import (
  ContextualRelevancyMetric,
  ContextualRecallMetric,
  ContextualPrecisionMetric,
  AnswerRelevancyMetric,
  FaithfulnessMetric
)

# import docx


from deepeval.test_case import LLMTestCase
from deepeval.dataset import EvaluationDataset, Golden

from deepeval import evaluate
from deepeval.models import OllamaModel
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from Llemma_Finetuned import Llemma_Finetuned
import ollama
import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

from deepeval.models import DeepEvalBaseLLM


class CustomLlemma(DeepEvalBaseLLM):
    def __init__(self):
        self.torch_device = "cuda" if torch.cuda.is_available() else "cpu"

        # finetuned
        model = AutoModelForCausalLM.from_pretrained("./merged_models/llemma_lora_merged").to(self.torch_device)
        tokenizer = AutoTokenizer.from_pretrained("./merged_models/llemma_lora_merged")
        
        self.model = model
        self.tokenizer = tokenizer

    def load_model(self):
        return self.model

    def generate(self, prompt: str) -> str:
        model = self.load_model()
        pipeline = transformers.pipeline(
            "text-generation",
            model=model,
            tokenizer=self.tokenizer,
            framework="pt",
            device=0,
            max_length=4096,
            eos_token_id=self.tokenizer.eos_token_id,
            pad_token_id=self.tokenizer.eos_token_id,
        )

        return pipeline(prompt)
        

        # inputs = self.tokenizer(prompt, return_tensors='pt').to(self.torch_device)
        # output = self.model.generate(**inputs)
        # a_output = self.tokenizer.decode(output[0])

        # return json.dumps(a_output)

    async def a_generate(self, prompt: str) -> str:
        return self.generate(prompt)

    def get_model_name(self):
        return "Llemma Fine-tuned"

#ollama run Hudson/llemma:7b
#deepeval set-ollama Hudson/llemma:7b

def is_invalid_length(text, length=4096):
    if len(text) <= length:
        return False
    else:
        return True

if __name__=="__main__":
    # Initialize parser
    parser = argparse.ArgumentParser()

    # Adding optional argument
    parser.add_argument("-t", "--test", help = "Test to run (ar, cp, crec, crel, f)")
    parser.add_argument("-d", "--dataset", help = "Path to test case dataset")

    # Read arguments from command line
    args = parser.parse_args()
    test_type = str(args.test)
    test_data = str(args.dataset)
    dataset = EvaluationDataset()

    # Add as test cases
    dataset.add_test_cases_from_json_file(
        # file_path is the absolute path to you .json file
        file_path=test_data,
        input_key_name="input",
        actual_output_key_name="actual_output",
        expected_output_key_name="expected_output",
        context_key_name="context",
        retrieval_context_key_name="retrieval_context",
    )

    # orig
    # model = ollama.pull(model="Hudson/llemma:7b")
    #OllamaModel(model="Hudson/llemma:7b")
    custom_llm = CustomLlemma()

    # finetuned
    # llemma_model = AutoModelForCausalLM.from_pretrained("./train_llemma/merged_models/llemma_lora_merged")
    # tokenizer = AutoTokenizer.from_pretrained("./train_llemma/merged_models/llemma_lora_merged")
    # model = Llemma_Finetuned(model=llemma_model, tokenizer=tokenizer)

    # sorted_rows = []
    # with open('dataset_row_stl.txt', 'r') as file:
    #     sorted_rows = file.readlines()
    # # print(sorted_rows)
    # sorted_rows = sorted_rows[0:num_shot]
    # sorted_rows = [int(x) for x in sorted_rows]

    # print("Read in sorted rows.")

    # examples = "Here are " + str(num_shot) + " examples of math questions (Q) with given answers (A).\n"
    # with jsonlines.open("mse_text_img_QA_ds_test.jsonl", mode='r') as fp:
    #     #with open("mse_text_img_QA_ds_test.jsonl", mode='r') as fp:
    #     n = 0
    #     for j, data in enumerate(fp):
    #         if j + 1 in sorted_rows:
    #             print("Num shot row " + str(j + 1))
    #             # data = json.loads(line)
    #             examples += "Q: " + data["body"] + "\n\n"
    #             is_accepted = False
    #             best_score = float('-inf')
    #             output_text = ""
    #             for i in range(len(data["answers"])):
    #                 if bool(data["answers"][i]["accepted"]) == True:
    #                     if is_accepted == False:
    #                         is_accepted = True
    #                         best_score = int(data["answers"][i]["score"])
    #                         output_text = data["answers"][i]["body"]
    #                     elif int(data["answers"][i]["score"]) > best_score:
    #                         best_score = int(data["answers"][i]["score"])
    #                         output_text = data["answers"][i]["body"]
    #                 elif int(data["answers"][i]["score"]) > best_score:
    #                     best_score = int(data["answers"][i]["score"])
    #                     output_text = data["answers"][i]["body"]
    #             examples += "A: " + output_text + "\n\n"
    #             if n == (num_shot - 1):
    #                 examples += "Provide an answer (A) to the following math question (Q) in a similar manner to the previous example(s) given.\n\nQ: "
    #             # 26th line
    #             n += 1
    #         elif n >= num_shot:
    #             break
    #         else:
    #             continue
    
    # print("Generated examples for", str(num_shot), "shot.")

    # mse_dataset = []
    # with jsonlines.open("mse_text_img_QA_ds_test.jsonl", mode='r') as reader:

    #     count = 0
        
    #     curr_row = 0
    #     for row in reader.iter(type=dict, skip_invalid=True):
    #         curr_row += 1
    #         if curr_row <= skip_to:
    #             continue
    #         elif curr_row == 33 or curr_row == 36 or curr_row == 69 \
    #             or curr_row == 24 or curr_row == 76 \
    #             or curr_row == 66 or curr_row == 9 \
    #             or curr_row == 26 or curr_row == 27 \
    #             or curr_row == 37 or curr_row == 55 \
    #             or curr_row == 54 or curr_row == 138 \
    #             or curr_row == 77 or curr_row == 84 or curr_row == 87 \
    #             or curr_row == 80 or curr_row == 81 or curr_row == 97 \
    #             or curr_row == 115 or curr_row == 106:
    #             print("Skipped row " + str(curr_row))
    #             continue
    #         elif curr_row in sorted_rows:
    #             print("Skipped row " + str(curr_row) + " because it is a shorter example")
    #             continue
    #     # question_path = "output/" + row["id"]
    #         # if count ual<= 0:
    #         #     print(obj)
    #         if count >= test_case_num:
    #             break
    #         else:
    #             input_text = row["body"]
    #             # response = ollama.generate(model='Hudson/llemma:7b', prompt=input_text)
    #             # actual_response = response['response']
    #             is_accepted = False
    #             best_score = float('-inf')
    #             output_text = ""
    #             # context = []
    #             next_best_answer = ""
    #             for i in range(len(row["answers"])):
    #                 if bool(row["answers"][i]["accepted"]) == True:
    #                     if is_accepted == False:
    #                         is_accepted = True
    #                         next_best_answer = output_text
    #                         best_score = int(row["answers"][i]["score"])
    #                         output_text = row["answers"][i]["body"]
    #                     elif int(row["answers"][i]["score"]) > best_score:
    #                         next_best_answer = output_text
    #                         best_score = int(row["answers"][i]["score"])
    #                         output_text = row["answers"][i]["body"]
    #                     # else:
    #                         # context.append(row["answers"][i]["body"])
    #                 elif int(row["answers"][i]["score"]) > best_score:
    #                     next_best_answer = output_text
    #                     best_score = int(row["answers"][i]["score"])
    #                     output_text = row["answers"][i]["body"]
    #                 # else:
    #                 #     context.append(row["answers"][i]["body"])
    #             if next_best_answer == "" or next_best_answer is None:
    #                 next_best_answer = row["title"]
    #             # test_case_dataset.append(LLMTestCase(input=input_text, actual_output=actual_response, expected_output=output_text, retrieval_context=None))
    #             # test_case_dataset.append(LLMTestCase(input=input_text, actual_output=model.generate(input_text), expected_output=output_text, retrieval_context=context))
    #             if num_shot == 0:
    #                 i_text = json.dumps(input_text)
    #                 e_output = json.dumps(output_text)
    #                 r_context = json.dumps(next_best_answer)
    #                 gen_answer = ollama.generate(model="Hudson/llemma:7b", prompt=i_text)
    #                 a_output = json.dumps(gen_answer.response)
    #                 # print("i_text = ", i_text)
    #                 # print("a_output = ", a_output)
    #                 # print("e_output = ", e_output)
    #                 # print("r_context = ", r_context)
    #                 # r_context = gen_answer.context
    #                 # if is_invalid_length(i_text) or is_invalid_length(e_output) or is_invalid_length(r_context):
    #                 #     continue
    #                 mse_dataset.append(LLMTestCase(input=i_text, actual_output=a_output, expected_output=e_output, retrieval_context=[r_context]))
    #             else:
    #                 i_text = json.dumps(examples + input_text)
    #                 e_output = json.dumps(output_text)
    #                 r_context = json.dumps(next_best_answer)
    #                 gen_answer = ollama.generate(model="Hudson/llemma:7b", prompt=i_text)
    #                 a_output = json.dumps(gen_answer.response)
    #                 # r_context = gen_answer.context
    #                 # print("i_text = ", i_text)
    #                 # print("a_output = ", a_output)
    #                 # print("e_output = ", e_output)
    #                 # print("r_context = ", r_context)
    #                 # if is_invalid_length(i_text) or is_invalid_length(e_output) or is_invalid_length(r_context):
    #                 #     continue
    #                 mse_dataset.append(LLMTestCase(input=i_text, actual_output=a_output, expected_output=e_output, retrieval_context=[r_context]))
    #             count = count + 1
    #             # if curr_row % 1 == 0:
    #             print("At", str(count), "out of", str(test_case_num), " current row =", str(curr_row))

    # first_test_case = LLMTestCase(input="...", actual_output="...", context=["..."])
    # second_test_case = LLMTestCase(input="...", actual_output="...", context=["..."])


    # dataset = EvaluationDataset(test_cases=mse_dataset)
    pass_threshold = 0.7

    # eval_output = ""

    if test_type == "ar":
        # answer_relevancy = AnswerRelevancyMetric(model=model, threshold=pass_threshold, async_mode=False)
        answer_relevancy = AnswerRelevancyMetric(model=custom_llm, threshold=pass_threshold)
        # evaluate(dataset, metrics=[answer_relevancy], out_file=out_path, run_async=True)
        # with open(out_path, "a") as f:
        #     # f.write(dataset.evaluate([answer_relevancy]))
        # eval_output = dataset.evaluate([answer_relevancy])
        # evaluate(goldens=dataset.goldens, metrics=[answer_relevancy])
        evaluate(dataset, metrics=[answer_relevancy])
    elif test_type == "cp":
        contextual_precision = ContextualPrecisionMetric(model=custom_llm, threshold=pass_threshold)
        # evaluate(dataset, metrics=[contextual_precision], out_file=out_path, run_async=True)
        # evaluate(dataset, metrics=[contextual_precision])
        # eval_output = dataset.evaluate([contextual_precision])
        # evaluate(goldens=dataset.goldens, metrics=[contextual_precision])
        evaluate(dataset, metrics=[contextual_precision])
    elif test_type == "crec":
        contextual_recall = ContextualRecallMetric(model=custom_llm, threshold=pass_threshold)
        # evaluate(dataset, metrics=[contextual_recall], out_file=out_path, run_async=True)
        # evaluate(dataset, metrics=[contextual_recall])
        # eval_output = dataset.evaluate([contextual_recall])
        # evaluate(goldens=dataset.goldens, metrics=[contextual_recall])
        evaluate(dataset, metrics=[contextual_recall])
    else:
        print("Test case (" + test_type + ") not covered")
    
    # with open(out_path, "a") as f:
    #     f.write(str(eval_output))

    # Create a document
    # doc = docx.Document()

    # # Add a paragraph to the document
    # p = doc.add_paragraph()

    # # Add some formatting to the paragraph
    # p.paragraph_format.line_spacing = 1
    # p.paragraph_format.space_after = 0

    # # Add a run to the paragraph
    # run = p.add_run(eval_output)

    # # Add some formatting to the run
    # run.bold = False
    # run.italic = False
    # run.font.name = 'Arial'
    # run.font.size = docx.shared.Pt(12)

    # # Save the document
    # doc.save(out_path)