|
|
import glob
|
|
|
import logging
|
|
|
import numpy as np
|
|
|
import os
|
|
|
import tempfile
|
|
|
from collections import OrderedDict
|
|
|
import torch
|
|
|
from PIL import Image
|
|
|
|
|
|
from detectron2.data import MetadataCatalog
|
|
|
from detectron2.utils import comm
|
|
|
from detectron2.utils.file_io import PathManager
|
|
|
from detectron2.evaluation.cityscapes_evaluation import CityscapesEvaluator
|
|
|
class CityscapesInstanceEvaluator(CityscapesEvaluator):
|
|
|
"""
|
|
|
Evaluate instance segmentation results on cityscapes dataset using cityscapes API.
|
|
|
|
|
|
Note:
|
|
|
* It does not work in multi-machine distributed training.
|
|
|
* It contains a synchronization, therefore has to be used on all ranks.
|
|
|
* Only the main process runs evaluation.
|
|
|
"""
|
|
|
|
|
|
def process(self, inputs, outputs):
|
|
|
from cityscapesscripts.helpers.labels import name2label
|
|
|
|
|
|
for input, output in zip(inputs, outputs):
|
|
|
file_name = input["file_name"]
|
|
|
basename = os.path.splitext(os.path.basename(file_name))[0]
|
|
|
pred_txt = os.path.join(self._temp_dir, basename + "_pred.txt")
|
|
|
|
|
|
if "instances" in output:
|
|
|
output = output["instances"].to(self._cpu_device)
|
|
|
num_instances = len(output)
|
|
|
with open(pred_txt, "w") as fout:
|
|
|
for i in range(num_instances):
|
|
|
pred_class = output.pred_classes[i]
|
|
|
classes = self._metadata.thing_classes[pred_class]
|
|
|
class_id = name2label[classes].id
|
|
|
score = output.scores[i]
|
|
|
mask = output.pred_masks[i].numpy().astype("uint8")
|
|
|
classes = classes.replace(' ','_')
|
|
|
png_filename = os.path.join(
|
|
|
self._temp_dir, basename + "_{}_{}.png".format(i, classes)
|
|
|
)
|
|
|
|
|
|
Image.fromarray(mask * 255).save(png_filename)
|
|
|
fout.write(
|
|
|
"{} {} {}\n".format(os.path.basename(png_filename), class_id, score)
|
|
|
)
|
|
|
else:
|
|
|
|
|
|
with open(pred_txt, "w") as fout:
|
|
|
pass
|
|
|
|
|
|
def evaluate(self):
|
|
|
"""
|
|
|
Returns:
|
|
|
dict: has a key "segm", whose value is a dict of "AP" and "AP50".
|
|
|
"""
|
|
|
comm.synchronize()
|
|
|
if comm.get_rank() > 0:
|
|
|
return
|
|
|
import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as cityscapes_eval
|
|
|
|
|
|
self._logger.info("Evaluating results under {} ...".format(self._temp_dir))
|
|
|
|
|
|
|
|
|
cityscapes_eval.args.predictionPath = os.path.abspath(self._temp_dir)
|
|
|
cityscapes_eval.args.predictionWalk = None
|
|
|
cityscapes_eval.args.JSONOutput = False
|
|
|
cityscapes_eval.args.colorized = False
|
|
|
cityscapes_eval.args.gtInstancesFile = os.path.join(self._temp_dir, "gtInstances.json")
|
|
|
|
|
|
|
|
|
|
|
|
gt_dir = PathManager.get_local_path(self._metadata.gt_dir)
|
|
|
groundTruthImgList = glob.glob(os.path.join(gt_dir, "*", "*_gtFine_instanceIds.png"))
|
|
|
assert len(
|
|
|
groundTruthImgList
|
|
|
), "Cannot find any ground truth images to use for evaluation. Searched for: {}".format(
|
|
|
cityscapes_eval.args.groundTruthSearch
|
|
|
)
|
|
|
predictionImgList = []
|
|
|
for gt in groundTruthImgList:
|
|
|
predictionImgList.append(cityscapes_eval.getPrediction(gt, cityscapes_eval.args))
|
|
|
|
|
|
results = cityscapes_eval.evaluateImgLists(
|
|
|
predictionImgList, groundTruthImgList, cityscapes_eval.args
|
|
|
)["averages"]
|
|
|
|
|
|
ret = OrderedDict()
|
|
|
ret["segm"] = {"AP": results["allAp"] * 100, "AP50": results["allAp50%"] * 100}
|
|
|
self._working_dir.cleanup()
|
|
|
return ret |