YujinPang commited on
Commit
9789f72
·
verified ·
1 Parent(s): 34e0805

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,448 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:100000
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: YujinPang/docemb_M3_1
10
+ widget:
11
+ - source_sentence: 'Course structure
12
+
13
+ Mechatronics students take courses in various fields:'
14
+ sentences:
15
+ - Robotics is one of the newest emerging subfield of mechatronics. It is the study
16
+ of robots that how they are manufactured and operated. Since 2000, this branch
17
+ of mechatronics is attracting a number of aspirants. Robotics is interrelated
18
+ with automation because here also not much human intervention is required. A large
19
+ number of factories especially in automobile factories, robots are founds in assembly
20
+ lines where they perform the job of drilling, installation and fitting. Programming
21
+ skills are necessary for specialization in robotics. Knowledge of programming
22
+ language —ROBOTC is important for functioning robots. An industrial robot is a
23
+ prime example of a mechatronics system; it includes aspects of electronics, mechanics,
24
+ and computing to do its day-to-day jobs.
25
+ - "Melting and boiling points \nMelting and boiling points, typically expressed\
26
+ \ in degrees Celsius at a pressure of one atmosphere, are commonly used in characterizing\
27
+ \ the various elements. While known for most elements, either or both of these\
28
+ \ measurements is still undetermined for some of the radioactive elements available\
29
+ \ in only tiny quantities. Since helium remains a liquid even at absolute zero\
30
+ \ at atmospheric pressure, it has only a boiling point, and not a melting point,\
31
+ \ in conventional presentations."
32
+ - Capsicum chili peppers are commonly used to add pungency in cuisines worldwide.
33
+ The range of pepper heat reflected by a Scoville score is from 500 or less (sweet
34
+ peppers) to over 2.6 million (Pepper X) (table below; Scoville scales for individual
35
+ chili peppers are in the respective linked article). Some peppers such as the
36
+ Guntur chilli and Rocoto are excluded from the list due to their very wide SHU
37
+ range. Others such as Dragon's Breath and Chocolate 7-pot have not been officially
38
+ verified.
39
+ - source_sentence: In contrast to the South Pole neutrino telescopes AMANDA and IceCube,
40
+ ANTARES uses water instead of ice as its Cherenkov medium. As light in water is
41
+ less scattered than in ice this results in a better resolving power. On the other
42
+ hand, water contains more sources of background light than ice (radioactive isotopes
43
+ potassium-40 in the sea salt and bioluminescent organisms), leading to a higher
44
+ energy thresholds for ANTARES with respect to IceCube and making more sophisticated
45
+ background-suppression methods necessary.
46
+ sentences:
47
+ - Deployment and connection of the detector are performed in cooperation with the
48
+ French oceanographic institute, IFREMER, currently using the ROV Victor, and for
49
+ some past operations the submarine Nautile.
50
+ - To distinguish the other types of multithreading from SMT, the term "temporal
51
+ multithreading" is used to denote when instructions from only one thread can be
52
+ issued at a time.
53
+ - The two most important classes of divergences are the f-divergences and Bregman
54
+ divergences; however, other types of divergence functions are also encountered
55
+ in the literature. The only divergence that is both an f-divergence and a Bregman
56
+ divergence is the Kullback–Leibler divergence; the squared Euclidean divergence
57
+ is a Bregman divergence (corresponding to the function ) but not an f-divergence.
58
+ - source_sentence: The term "hyperbolic geometry" was introduced by Felix Klein in
59
+ 1871. Klein followed an initiative of Arthur Cayley to use the transformations
60
+ of projective geometry to produce isometries. The idea used a conic section or
61
+ quadric to define a region, and used cross ratio to define a metric. The projective
62
+ transformations that leave the conic section or quadric stable are the isometries.
63
+ "Klein showed that if the Cayley absolute is a real curve then the part of the
64
+ projective plane in its interior is isometric to the hyperbolic plane..."
65
+ sentences:
66
+ - The mathematics is not difficult but is intertwined so the following is only a
67
+ brief sketch. Starting with a non-symmetric tensor , the Lagrangian density is
68
+ split into
69
+ - 'Because Euclidean, hyperbolic and elliptic geometry are all consistent, the question
70
+ arises: which is the real geometry of space, and if it is hyperbolic or elliptic,
71
+ what is its curvature?'
72
+ - Wind farm waste is less toxic than other garbage. Wind turbine blades represent
73
+ only a fraction of overall waste in the US, according to the Wind-industry trade
74
+ association, American Wind Energy Association.
75
+ - source_sentence: 'The StyleGAN-2-ADA paper points out a further point on data augmentation:
76
+ it must be invertible. Continue with the example of generating ImageNet pictures.
77
+ If the data augmentation is "randomly rotate the picture by 0, 90, 180, 270 degrees
78
+ with equal probability", then there is no way for the generator to know which
79
+ is the true orientation: Consider two generators , such that for any latent ,
80
+ the generated image is a 90-degree rotation of . They would have exactly the
81
+ same expected loss, and so neither is preferred over the other.'
82
+ sentences:
83
+ - The key method to distinguish between these different models involves study of
84
+ the particles' interactions ("coupling") and exact decay processes ("branching
85
+ ratios"), which can be measured and tested experimentally in particle collisions.
86
+ In the Type-I 2HDM model one Higgs doublet couples to up and down quarks, while
87
+ the second doublet does not couple to quarks. This model has two interesting limits,
88
+ in which the lightest Higgs couples to just fermions ("gauge-phobic") or just
89
+ gauge bosons ("fermiophobic"), but not both. In the Type-II 2HDM model, one Higgs
90
+ doublet only couples to up-type quarks, the other only couples to down-type quarks.
91
+ The heavily researched Minimal Supersymmetric Standard Model (MSSM) includes a
92
+ Type-II 2HDM Higgs sector, so it could be disproven by evidence of a Type-I 2HDM
93
+ Higgs.
94
+ - "Model variants \nSeveral different model variants of the S4 are sold, with most\
95
+ \ variants varying mainly in handling regional network types and bands. To prevent\
96
+ \ grey market reselling, models of the S4 manufactured after July 2013 implement\
97
+ \ a regional lockout system in certain regions, requiring that the first SIM card\
98
+ \ used on a European and North American model be from a carrier in that region.\
99
+ \ Samsung stated that the lock would be removed once a local SIM card is used.\
100
+ \ SIM format for all variants is Micro-SIM, which can have one or two depending\
101
+ \ on model."
102
+ - Another inspiration for GANs was noise-contrastive estimation, which uses the
103
+ same loss function as GANs and which Goodfellow studied during his PhD in 2010–2014.
104
+ - source_sentence: The final step for the BoW model is to convert vector-represented
105
+ patches to "codewords" (analogous to words in text documents), which also produces
106
+ a "codebook" (analogy to a word dictionary). A codeword can be considered as a
107
+ representative of several similar patches. One simple method is performing k-means
108
+ clustering over all the vectors. Codewords are then defined as the centers of
109
+ the learned clusters. The number of the clusters is the codebook size (analogous
110
+ to the size of the word dictionary).
111
+ sentences:
112
+ - Pathria retired from the University of Waterloo in August 1998 and, soon thereafter,
113
+ moved to the west coast of the US and became an adjunct professor of physics at
114
+ the University of California at San Diego – a position he continued to hold till
115
+ 2010. In 2009, Pathria's newest publishers (Elsevier/Academic) prevailed upon
116
+ him to produce a third edition of this book. He now sought the help of Paul Beale,
117
+ of the University of Colorado at Boulder, whose co-authorship resulted in another
118
+ brand new edition in March 2011. Ten years later, in 2021, Pathria and Beale produced
119
+ a fourth edition of this book.
120
+ - 'C++
121
+
122
+ In the 1970s, software engineers needed language support to break large projects
123
+ down into modules. One obvious feature was to decompose large projects physically
124
+ into separate files. A less obvious feature was to decompose large projects logically
125
+ into abstract datatypes. At the time, languages supported concrete (scalar) datatypes
126
+ like integer numbers, floating-point numbers, and strings of characters. Abstract
127
+ datatypes are structures of concrete datatypes, with a new name assigned. For
128
+ example, a list of integers could be called integer_list.'
129
+ - "External links\n Bag of Visual Words in a Nutshell a short tutorial by Bethea\
130
+ \ Davida. A demo for two bag-of-words classifiers by L. Fei-Fei, R. Fergus, and\
131
+ \ A. Torralba. Caltech Large Scale Image Search Toolbox: a Matlab/C++ toolbox\
132
+ \ implementing Inverted File search for Bag of Words model. It also contains implementations\
133
+ \ for fast approximate nearest neighbor search using randomized k-d tree, locality-sensitive\
134
+ \ hashing, and hierarchical k-means. DBoW2 library: a library that implements\
135
+ \ a fast bag of words in C++ with support for OpenCV."
136
+ pipeline_tag: sentence-similarity
137
+ library_name: sentence-transformers
138
+ ---
139
+
140
+ # SentenceTransformer based on YujinPang/docemb_M3_1
141
+
142
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [YujinPang/docemb_M3_1](https://huggingface.co/YujinPang/docemb_M3_1). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
143
+
144
+ ## Model Details
145
+
146
+ ### Model Description
147
+ - **Model Type:** Sentence Transformer
148
+ - **Base model:** [YujinPang/docemb_M3_1](https://huggingface.co/YujinPang/docemb_M3_1) <!-- at revision 258eb8caf51c50eb52e628dd96c8d818f0aaf078 -->
149
+ - **Maximum Sequence Length:** 256 tokens
150
+ - **Output Dimensionality:** 384 dimensions
151
+ - **Similarity Function:** Cosine Similarity
152
+ <!-- - **Training Dataset:** Unknown -->
153
+ <!-- - **Language:** Unknown -->
154
+ <!-- - **License:** Unknown -->
155
+
156
+ ### Model Sources
157
+
158
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
159
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
160
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
161
+
162
+ ### Full Model Architecture
163
+
164
+ ```
165
+ SentenceTransformer(
166
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
167
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
168
+ (2): Normalize()
169
+ )
170
+ ```
171
+
172
+ ## Usage
173
+
174
+ ### Direct Usage (Sentence Transformers)
175
+
176
+ First install the Sentence Transformers library:
177
+
178
+ ```bash
179
+ pip install -U sentence-transformers
180
+ ```
181
+
182
+ Then you can load this model and run inference.
183
+ ```python
184
+ from sentence_transformers import SentenceTransformer
185
+
186
+ # Download from the 🤗 Hub
187
+ model = SentenceTransformer("YujinPang/docemb_M3_1_9")
188
+ # Run inference
189
+ sentences = [
190
+ 'The final step for the BoW model is to convert vector-represented patches to "codewords" (analogous to words in text documents), which also produces a "codebook" (analogy to a word dictionary). A codeword can be considered as a representative of several similar patches. One simple method is performing k-means clustering over all the vectors. Codewords are then defined as the centers of the learned clusters. The number of the clusters is the codebook size (analogous to the size of the word dictionary).',
191
+ 'External links\n Bag of Visual Words in a Nutshell a short tutorial by Bethea Davida. A demo for two bag-of-words classifiers by L. Fei-Fei, R. Fergus, and A. Torralba. Caltech Large Scale Image Search Toolbox: a Matlab/C++ toolbox implementing Inverted File search for Bag of Words model. It also contains implementations for fast approximate nearest neighbor search using randomized k-d tree, locality-sensitive hashing, and hierarchical k-means. DBoW2 library: a library that implements a fast bag of words in C++ with support for OpenCV.',
192
+ 'C++\nIn the 1970s, software engineers needed language support to break large projects down into modules. One obvious feature was to decompose large projects physically into separate files. A less obvious feature was to decompose large projects logically into abstract datatypes. At the time, languages supported concrete (scalar) datatypes like integer numbers, floating-point numbers, and strings of characters. Abstract datatypes are structures of concrete datatypes, with a new name assigned. For example, a list of integers could be called integer_list.',
193
+ ]
194
+ embeddings = model.encode(sentences)
195
+ print(embeddings.shape)
196
+ # [3, 384]
197
+
198
+ # Get the similarity scores for the embeddings
199
+ similarities = model.similarity(embeddings, embeddings)
200
+ print(similarities.shape)
201
+ # [3, 3]
202
+ ```
203
+
204
+ <!--
205
+ ### Direct Usage (Transformers)
206
+
207
+ <details><summary>Click to see the direct usage in Transformers</summary>
208
+
209
+ </details>
210
+ -->
211
+
212
+ <!--
213
+ ### Downstream Usage (Sentence Transformers)
214
+
215
+ You can finetune this model on your own dataset.
216
+
217
+ <details><summary>Click to expand</summary>
218
+
219
+ </details>
220
+ -->
221
+
222
+ <!--
223
+ ### Out-of-Scope Use
224
+
225
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
226
+ -->
227
+
228
+ <!--
229
+ ## Bias, Risks and Limitations
230
+
231
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
232
+ -->
233
+
234
+ <!--
235
+ ### Recommendations
236
+
237
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
238
+ -->
239
+
240
+ ## Training Details
241
+
242
+ ### Training Dataset
243
+
244
+ #### Unnamed Dataset
245
+
246
+ * Size: 100,000 training samples
247
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
248
+ * Approximate statistics based on the first 1000 samples:
249
+ | | sentence_0 | sentence_1 |
250
+ |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
251
+ | type | string | string |
252
+ | details | <ul><li>min: 10 tokens</li><li>mean: 96.25 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 93.51 tokens</li><li>max: 256 tokens</li></ul> |
253
+ * Samples:
254
+ | sentence_0 | sentence_1 |
255
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|
256
+ | <code>The character has been portrayed by Silas Carson in Episodes I-III, and voiced by Tom Kenny in The Clone Wars.</code> | <code>The character has been voiced by Dee Bradley Baker in The Clone Wars and The Bad Batch.</code> |
257
+ | <code>Abdomen <br>The muscles of the abdominal wall are subdivided into a superficial and a deep group.</code> | <code>The muscles of the hip are divided into a dorsal and a ventral group.</code> |
258
+ | <code>Resonant frequency<br>When placed in a magnetic field, NMR active nuclei (such as 1H or 13C) absorb electromagnetic radiation at a frequency characteristic of the isotope. The resonant frequency, energy of the radiation absorbed, and the intensity of the signal are proportional to the strength of the magnetic field. For example, in a 21 Tesla magnetic field, hydrogen nuclei (commonly referred to as protons) resonate at 900 MHz. It is common to refer to a 21 T magnet as a 900 MHz magnet since hydrogen is the most common nucleus detected. However, different nuclei will resonate at different frequencies at this field strength in proportion to their nuclear magnetic moments.</code> | <code>Spectral interpretation<br>NMR signals are ordinarily characterized by three variables: chemical shift, spin-spin coupling, and relaxation time.</code> |
259
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
260
+ ```json
261
+ {
262
+ "scale": 20.0,
263
+ "similarity_fct": "cos_sim"
264
+ }
265
+ ```
266
+
267
+ ### Training Hyperparameters
268
+ #### Non-Default Hyperparameters
269
+
270
+ - `per_device_train_batch_size`: 256
271
+ - `per_device_eval_batch_size`: 256
272
+ - `num_train_epochs`: 1
273
+ - `multi_dataset_batch_sampler`: round_robin
274
+
275
+ #### All Hyperparameters
276
+ <details><summary>Click to expand</summary>
277
+
278
+ - `overwrite_output_dir`: False
279
+ - `do_predict`: False
280
+ - `eval_strategy`: no
281
+ - `prediction_loss_only`: True
282
+ - `per_device_train_batch_size`: 256
283
+ - `per_device_eval_batch_size`: 256
284
+ - `per_gpu_train_batch_size`: None
285
+ - `per_gpu_eval_batch_size`: None
286
+ - `gradient_accumulation_steps`: 1
287
+ - `eval_accumulation_steps`: None
288
+ - `torch_empty_cache_steps`: None
289
+ - `learning_rate`: 5e-05
290
+ - `weight_decay`: 0.0
291
+ - `adam_beta1`: 0.9
292
+ - `adam_beta2`: 0.999
293
+ - `adam_epsilon`: 1e-08
294
+ - `max_grad_norm`: 1
295
+ - `num_train_epochs`: 1
296
+ - `max_steps`: -1
297
+ - `lr_scheduler_type`: linear
298
+ - `lr_scheduler_kwargs`: {}
299
+ - `warmup_ratio`: 0.0
300
+ - `warmup_steps`: 0
301
+ - `log_level`: passive
302
+ - `log_level_replica`: warning
303
+ - `log_on_each_node`: True
304
+ - `logging_nan_inf_filter`: True
305
+ - `save_safetensors`: True
306
+ - `save_on_each_node`: False
307
+ - `save_only_model`: False
308
+ - `restore_callback_states_from_checkpoint`: False
309
+ - `no_cuda`: False
310
+ - `use_cpu`: False
311
+ - `use_mps_device`: False
312
+ - `seed`: 42
313
+ - `data_seed`: None
314
+ - `jit_mode_eval`: False
315
+ - `use_ipex`: False
316
+ - `bf16`: False
317
+ - `fp16`: False
318
+ - `fp16_opt_level`: O1
319
+ - `half_precision_backend`: auto
320
+ - `bf16_full_eval`: False
321
+ - `fp16_full_eval`: False
322
+ - `tf32`: None
323
+ - `local_rank`: 0
324
+ - `ddp_backend`: None
325
+ - `tpu_num_cores`: None
326
+ - `tpu_metrics_debug`: False
327
+ - `debug`: []
328
+ - `dataloader_drop_last`: False
329
+ - `dataloader_num_workers`: 0
330
+ - `dataloader_prefetch_factor`: None
331
+ - `past_index`: -1
332
+ - `disable_tqdm`: False
333
+ - `remove_unused_columns`: True
334
+ - `label_names`: None
335
+ - `load_best_model_at_end`: False
336
+ - `ignore_data_skip`: False
337
+ - `fsdp`: []
338
+ - `fsdp_min_num_params`: 0
339
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
340
+ - `fsdp_transformer_layer_cls_to_wrap`: None
341
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
342
+ - `deepspeed`: None
343
+ - `label_smoothing_factor`: 0.0
344
+ - `optim`: adamw_torch
345
+ - `optim_args`: None
346
+ - `adafactor`: False
347
+ - `group_by_length`: False
348
+ - `length_column_name`: length
349
+ - `ddp_find_unused_parameters`: None
350
+ - `ddp_bucket_cap_mb`: None
351
+ - `ddp_broadcast_buffers`: False
352
+ - `dataloader_pin_memory`: True
353
+ - `dataloader_persistent_workers`: False
354
+ - `skip_memory_metrics`: True
355
+ - `use_legacy_prediction_loop`: False
356
+ - `push_to_hub`: False
357
+ - `resume_from_checkpoint`: None
358
+ - `hub_model_id`: None
359
+ - `hub_strategy`: every_save
360
+ - `hub_private_repo`: None
361
+ - `hub_always_push`: False
362
+ - `gradient_checkpointing`: False
363
+ - `gradient_checkpointing_kwargs`: None
364
+ - `include_inputs_for_metrics`: False
365
+ - `include_for_metrics`: []
366
+ - `eval_do_concat_batches`: True
367
+ - `fp16_backend`: auto
368
+ - `push_to_hub_model_id`: None
369
+ - `push_to_hub_organization`: None
370
+ - `mp_parameters`:
371
+ - `auto_find_batch_size`: False
372
+ - `full_determinism`: False
373
+ - `torchdynamo`: None
374
+ - `ray_scope`: last
375
+ - `ddp_timeout`: 1800
376
+ - `torch_compile`: False
377
+ - `torch_compile_backend`: None
378
+ - `torch_compile_mode`: None
379
+ - `include_tokens_per_second`: False
380
+ - `include_num_input_tokens_seen`: False
381
+ - `neftune_noise_alpha`: None
382
+ - `optim_target_modules`: None
383
+ - `batch_eval_metrics`: False
384
+ - `eval_on_start`: False
385
+ - `use_liger_kernel`: False
386
+ - `eval_use_gather_object`: False
387
+ - `average_tokens_across_devices`: False
388
+ - `prompts`: None
389
+ - `batch_sampler`: batch_sampler
390
+ - `multi_dataset_batch_sampler`: round_robin
391
+
392
+ </details>
393
+
394
+ ### Framework Versions
395
+ - Python: 3.10.11
396
+ - Sentence Transformers: 4.1.0
397
+ - Transformers: 4.52.3
398
+ - PyTorch: 2.7.0+cu126
399
+ - Accelerate: 1.7.0
400
+ - Datasets: 3.6.0
401
+ - Tokenizers: 0.21.1
402
+
403
+ ## Citation
404
+
405
+ ### BibTeX
406
+
407
+ #### Sentence Transformers
408
+ ```bibtex
409
+ @inproceedings{reimers-2019-sentence-bert,
410
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
411
+ author = "Reimers, Nils and Gurevych, Iryna",
412
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
413
+ month = "11",
414
+ year = "2019",
415
+ publisher = "Association for Computational Linguistics",
416
+ url = "https://arxiv.org/abs/1908.10084",
417
+ }
418
+ ```
419
+
420
+ #### MultipleNegativesRankingLoss
421
+ ```bibtex
422
+ @misc{henderson2017efficient,
423
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
424
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
425
+ year={2017},
426
+ eprint={1705.00652},
427
+ archivePrefix={arXiv},
428
+ primaryClass={cs.CL}
429
+ }
430
+ ```
431
+
432
+ <!--
433
+ ## Glossary
434
+
435
+ *Clearly define terms in order to be accessible across audiences.*
436
+ -->
437
+
438
+ <!--
439
+ ## Model Card Authors
440
+
441
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
442
+ -->
443
+
444
+ <!--
445
+ ## Model Card Contact
446
+
447
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
448
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 6,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.52.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.3",
5
+ "pytorch": "2.7.0+cu126"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:533e7338d62f28472477172d303aad9b8b84c399f5797b7c77f319b5804315e0
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff