VishalBharadwaj commited on
Commit
ab14fe6
·
verified ·
1 Parent(s): 611a4db

Upload fine-tuned LoRA adapter for EZCoder

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +10 -0
  2. README.md +62 -0
  3. adapter_config.json +42 -0
  4. adapter_model.safetensors +3 -0
  5. added_tokens.json +24 -0
  6. chat_template.jinja +54 -0
  7. checkpoint-1000/README.md +209 -0
  8. checkpoint-1000/adapter_config.json +42 -0
  9. checkpoint-1000/adapter_model.safetensors +3 -0
  10. checkpoint-1000/added_tokens.json +24 -0
  11. checkpoint-1000/chat_template.jinja +54 -0
  12. checkpoint-1000/merges.txt +0 -0
  13. checkpoint-1000/optimizer.pt +3 -0
  14. checkpoint-1000/rng_state.pth +3 -0
  15. checkpoint-1000/scaler.pt +3 -0
  16. checkpoint-1000/scheduler.pt +3 -0
  17. checkpoint-1000/special_tokens_map.json +31 -0
  18. checkpoint-1000/tokenizer.json +3 -0
  19. checkpoint-1000/tokenizer_config.json +207 -0
  20. checkpoint-1000/trainer_state.json +1034 -0
  21. checkpoint-1000/training_args.bin +3 -0
  22. checkpoint-1000/vocab.json +0 -0
  23. checkpoint-1500/README.md +209 -0
  24. checkpoint-1500/adapter_config.json +42 -0
  25. checkpoint-1500/adapter_model.safetensors +3 -0
  26. checkpoint-1500/added_tokens.json +24 -0
  27. checkpoint-1500/chat_template.jinja +54 -0
  28. checkpoint-1500/merges.txt +0 -0
  29. checkpoint-1500/optimizer.pt +3 -0
  30. checkpoint-1500/rng_state.pth +3 -0
  31. checkpoint-1500/scaler.pt +3 -0
  32. checkpoint-1500/scheduler.pt +3 -0
  33. checkpoint-1500/special_tokens_map.json +31 -0
  34. checkpoint-1500/tokenizer.json +3 -0
  35. checkpoint-1500/tokenizer_config.json +207 -0
  36. checkpoint-1500/trainer_state.json +1534 -0
  37. checkpoint-1500/training_args.bin +3 -0
  38. checkpoint-1500/vocab.json +0 -0
  39. checkpoint-2000/README.md +209 -0
  40. checkpoint-2000/adapter_config.json +42 -0
  41. checkpoint-2000/adapter_model.safetensors +3 -0
  42. checkpoint-2000/added_tokens.json +24 -0
  43. checkpoint-2000/chat_template.jinja +54 -0
  44. checkpoint-2000/merges.txt +0 -0
  45. checkpoint-2000/optimizer.pt +3 -0
  46. checkpoint-2000/rng_state.pth +3 -0
  47. checkpoint-2000/scaler.pt +3 -0
  48. checkpoint-2000/scheduler.pt +3 -0
  49. checkpoint-2000/special_tokens_map.json +31 -0
  50. checkpoint-2000/tokenizer.json +3 -0
.gitattributes CHANGED
@@ -33,3 +33,13 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-1000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-1500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-2000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ checkpoint-2500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
40
+ checkpoint-3000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
41
+ checkpoint-3500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
42
+ checkpoint-4000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
43
+ checkpoint-4377/tokenizer.json filter=lfs diff=lfs merge=lfs -text
44
+ checkpoint-500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
45
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct
3
+ library_name: peft
4
+ model_name: fine-tuned-model-qwen
5
+ tags:
6
+ - base_model:adapter:Qwen/Qwen2.5-Coder-1.5B-Instruct
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ licence: license
12
+ pipeline_tag: text-generation
13
+ ---
14
+
15
+ # Model Card for fine-tuned-model-qwen
16
+
17
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct).
18
+ It has been trained using [TRL](https://github.com/huggingface/trl).
19
+
20
+ ## Quick start
21
+
22
+ ```python
23
+ from transformers import pipeline
24
+
25
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
26
+ generator = pipeline("text-generation", model="None", device="cuda")
27
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
28
+ print(output["generated_text"])
29
+ ```
30
+
31
+ ## Training procedure
32
+
33
+
34
+
35
+
36
+ This model was trained with SFT.
37
+
38
+ ### Framework versions
39
+
40
+ - PEFT 0.17.1
41
+ - TRL: 0.23.1
42
+ - Transformers: 5.0.0.dev0
43
+ - Pytorch: 2.8.0+cu126
44
+ - Datasets: 4.0.0
45
+ - Tokenizers: 0.22.1
46
+
47
+ ## Citations
48
+
49
+
50
+
51
+ Cite TRL as:
52
+
53
+ ```bibtex
54
+ @misc{vonwerra2022trl,
55
+ title = {{TRL: Transformer Reinforcement Learning}},
56
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
57
+ year = 2020,
58
+ journal = {GitHub repository},
59
+ publisher = {GitHub},
60
+ howpublished = {\url{https://github.com/huggingface/trl}}
61
+ }
62
+ ```
adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-1.5B-Instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "v_proj",
29
+ "gate_proj",
30
+ "up_proj",
31
+ "o_proj",
32
+ "down_proj",
33
+ "k_proj",
34
+ "q_proj"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:369986feb3410de5f55491a6ff3d891604bfae38f18f2c8806cdff921187f142
3
+ size 73911112
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
checkpoint-1000/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Qwen/Qwen2.5-Coder-1.5B-Instruct
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.17.1
checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-1.5B-Instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "v_proj",
29
+ "gate_proj",
30
+ "up_proj",
31
+ "o_proj",
32
+ "down_proj",
33
+ "k_proj",
34
+ "q_proj"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74f854ee2e73ea4bf3af0fa5de3ee6a2b4dc8265c3dc899144a09ac8704d4603
3
+ size 73911112
checkpoint-1000/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-1000/chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
checkpoint-1000/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8217588199d583c7a8e724049803a2b15ed43fef4cea5d84111244edce9d2ff0
3
+ size 148053627
checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be424ec4e2864dfd075ab57e01ff2046dac76a1ebf6f225396fc09c3677b74cc
3
+ size 14645
checkpoint-1000/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14ae2a2128444abab378aa06c09a61a84665f758fcc19fc46f5789b0bc1b5665
3
+ size 1383
checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:761876adac15f13dfb3790a972abbe745507fc4a15894c6bdaf077a0843de423
3
+ size 1465
checkpoint-1000/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-1000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-1000/tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 32768,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,1034 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.6854009595613434,
6
+ "eval_steps": 500,
7
+ "global_step": 1000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "entropy": 0.9619973443448544,
14
+ "epoch": 0.006854009595613434,
15
+ "grad_norm": 0.8562721610069275,
16
+ "learning_rate": 0.0001995887594242632,
17
+ "loss": 0.7973,
18
+ "mean_token_accuracy": 0.7519877135753632,
19
+ "num_tokens": 15771.0,
20
+ "step": 10
21
+ },
22
+ {
23
+ "entropy": 0.7034977793693542,
24
+ "epoch": 0.013708019191226868,
25
+ "grad_norm": 0.5451128482818604,
26
+ "learning_rate": 0.0001991318254512223,
27
+ "loss": 0.5986,
28
+ "mean_token_accuracy": 0.8309322476387024,
29
+ "num_tokens": 33062.0,
30
+ "step": 20
31
+ },
32
+ {
33
+ "entropy": 0.6603402759879827,
34
+ "epoch": 0.0205620287868403,
35
+ "grad_norm": 0.5171676278114319,
36
+ "learning_rate": 0.00019867489147818142,
37
+ "loss": 0.633,
38
+ "mean_token_accuracy": 0.8433935061097145,
39
+ "num_tokens": 48936.0,
40
+ "step": 30
41
+ },
42
+ {
43
+ "entropy": 0.6830728624016047,
44
+ "epoch": 0.027416038382453736,
45
+ "grad_norm": 0.4969835877418518,
46
+ "learning_rate": 0.0001982179575051405,
47
+ "loss": 0.6773,
48
+ "mean_token_accuracy": 0.8266744241118431,
49
+ "num_tokens": 61449.0,
50
+ "step": 40
51
+ },
52
+ {
53
+ "entropy": 0.5286078054457903,
54
+ "epoch": 0.03427004797806717,
55
+ "grad_norm": 0.44698312878608704,
56
+ "learning_rate": 0.00019776102353209963,
57
+ "loss": 0.5558,
58
+ "mean_token_accuracy": 0.8533428102731705,
59
+ "num_tokens": 77104.0,
60
+ "step": 50
61
+ },
62
+ {
63
+ "entropy": 0.5590948283672332,
64
+ "epoch": 0.0411240575736806,
65
+ "grad_norm": 0.38724300265312195,
66
+ "learning_rate": 0.00019730408955905872,
67
+ "loss": 0.5771,
68
+ "mean_token_accuracy": 0.8514142513275147,
69
+ "num_tokens": 91558.0,
70
+ "step": 60
71
+ },
72
+ {
73
+ "entropy": 0.599293502047658,
74
+ "epoch": 0.047978067169294036,
75
+ "grad_norm": 0.5922872424125671,
76
+ "learning_rate": 0.00019684715558601783,
77
+ "loss": 0.5309,
78
+ "mean_token_accuracy": 0.851950392127037,
79
+ "num_tokens": 105756.0,
80
+ "step": 70
81
+ },
82
+ {
83
+ "entropy": 0.6024694256484509,
84
+ "epoch": 0.05483207676490747,
85
+ "grad_norm": 0.5078150629997253,
86
+ "learning_rate": 0.00019639022161297692,
87
+ "loss": 0.6727,
88
+ "mean_token_accuracy": 0.8480887472629547,
89
+ "num_tokens": 120163.0,
90
+ "step": 80
91
+ },
92
+ {
93
+ "entropy": 0.5648054199293255,
94
+ "epoch": 0.061686086360520906,
95
+ "grad_norm": 0.29077377915382385,
96
+ "learning_rate": 0.00019593328763993604,
97
+ "loss": 0.5509,
98
+ "mean_token_accuracy": 0.8548661589622497,
99
+ "num_tokens": 138293.0,
100
+ "step": 90
101
+ },
102
+ {
103
+ "entropy": 0.5659369576722384,
104
+ "epoch": 0.06854009595613433,
105
+ "grad_norm": 0.3394547700881958,
106
+ "learning_rate": 0.00019547635366689515,
107
+ "loss": 0.5729,
108
+ "mean_token_accuracy": 0.8460367009043693,
109
+ "num_tokens": 157530.0,
110
+ "step": 100
111
+ },
112
+ {
113
+ "entropy": 0.6021960902959108,
114
+ "epoch": 0.07539410555174778,
115
+ "grad_norm": 0.42912933230400085,
116
+ "learning_rate": 0.00019501941969385424,
117
+ "loss": 0.5465,
118
+ "mean_token_accuracy": 0.851969163119793,
119
+ "num_tokens": 170607.0,
120
+ "step": 110
121
+ },
122
+ {
123
+ "entropy": 0.610968679189682,
124
+ "epoch": 0.0822481151473612,
125
+ "grad_norm": 0.3759806752204895,
126
+ "learning_rate": 0.00019456248572081335,
127
+ "loss": 0.632,
128
+ "mean_token_accuracy": 0.83554507791996,
129
+ "num_tokens": 185672.0,
130
+ "step": 120
131
+ },
132
+ {
133
+ "entropy": 0.5211818940937519,
134
+ "epoch": 0.08910212474297464,
135
+ "grad_norm": 0.503212034702301,
136
+ "learning_rate": 0.00019410555174777244,
137
+ "loss": 0.547,
138
+ "mean_token_accuracy": 0.8610908895730972,
139
+ "num_tokens": 200482.0,
140
+ "step": 130
141
+ },
142
+ {
143
+ "entropy": 0.4536220826208591,
144
+ "epoch": 0.09595613433858807,
145
+ "grad_norm": 0.7268697619438171,
146
+ "learning_rate": 0.00019364861777473156,
147
+ "loss": 0.4726,
148
+ "mean_token_accuracy": 0.870763523876667,
149
+ "num_tokens": 216537.0,
150
+ "step": 140
151
+ },
152
+ {
153
+ "entropy": 0.5031640276312828,
154
+ "epoch": 0.10281014393420151,
155
+ "grad_norm": 0.33594396710395813,
156
+ "learning_rate": 0.00019319168380169065,
157
+ "loss": 0.5923,
158
+ "mean_token_accuracy": 0.8628711074590683,
159
+ "num_tokens": 232400.0,
160
+ "step": 150
161
+ },
162
+ {
163
+ "entropy": 0.6555169004946947,
164
+ "epoch": 0.10966415352981494,
165
+ "grad_norm": 0.5894250869750977,
166
+ "learning_rate": 0.00019273474982864976,
167
+ "loss": 0.5634,
168
+ "mean_token_accuracy": 0.838917362689972,
169
+ "num_tokens": 244273.0,
170
+ "step": 160
171
+ },
172
+ {
173
+ "entropy": 0.6185528110712767,
174
+ "epoch": 0.11651816312542837,
175
+ "grad_norm": 0.5221670269966125,
176
+ "learning_rate": 0.00019227781585560888,
177
+ "loss": 0.6818,
178
+ "mean_token_accuracy": 0.8385803163051605,
179
+ "num_tokens": 262927.0,
180
+ "step": 170
181
+ },
182
+ {
183
+ "entropy": 0.43512718714773657,
184
+ "epoch": 0.12337217272104181,
185
+ "grad_norm": 0.4728280007839203,
186
+ "learning_rate": 0.00019182088188256796,
187
+ "loss": 0.5178,
188
+ "mean_token_accuracy": 0.8747259676456451,
189
+ "num_tokens": 271716.0,
190
+ "step": 180
191
+ },
192
+ {
193
+ "entropy": 0.6649946108460426,
194
+ "epoch": 0.13022618231665525,
195
+ "grad_norm": 0.47320684790611267,
196
+ "learning_rate": 0.00019136394790952708,
197
+ "loss": 0.6651,
198
+ "mean_token_accuracy": 0.8223798260092735,
199
+ "num_tokens": 287518.0,
200
+ "step": 190
201
+ },
202
+ {
203
+ "entropy": 0.44864910580217837,
204
+ "epoch": 0.13708019191226867,
205
+ "grad_norm": 0.4356485903263092,
206
+ "learning_rate": 0.00019090701393648617,
207
+ "loss": 0.4631,
208
+ "mean_token_accuracy": 0.8835410609841347,
209
+ "num_tokens": 306299.0,
210
+ "step": 200
211
+ },
212
+ {
213
+ "entropy": 0.5033049076795578,
214
+ "epoch": 0.1439342015078821,
215
+ "grad_norm": 0.48287737369537354,
216
+ "learning_rate": 0.00019045007996344528,
217
+ "loss": 0.5933,
218
+ "mean_token_accuracy": 0.8669374987483025,
219
+ "num_tokens": 321955.0,
220
+ "step": 210
221
+ },
222
+ {
223
+ "entropy": 0.43575111888349055,
224
+ "epoch": 0.15078821110349555,
225
+ "grad_norm": 0.5973707437515259,
226
+ "learning_rate": 0.0001899931459904044,
227
+ "loss": 0.4856,
228
+ "mean_token_accuracy": 0.8797904253005981,
229
+ "num_tokens": 332265.0,
230
+ "step": 220
231
+ },
232
+ {
233
+ "entropy": 0.6193726476281881,
234
+ "epoch": 0.157642220699109,
235
+ "grad_norm": 0.28756600618362427,
236
+ "learning_rate": 0.0001895362120173635,
237
+ "loss": 0.6056,
238
+ "mean_token_accuracy": 0.8307039767503739,
239
+ "num_tokens": 346377.0,
240
+ "step": 230
241
+ },
242
+ {
243
+ "entropy": 0.5753613166511059,
244
+ "epoch": 0.1644962302947224,
245
+ "grad_norm": 0.4320402145385742,
246
+ "learning_rate": 0.0001890792780443226,
247
+ "loss": 0.5834,
248
+ "mean_token_accuracy": 0.8549783885478973,
249
+ "num_tokens": 362964.0,
250
+ "step": 240
251
+ },
252
+ {
253
+ "entropy": 0.5963706407696009,
254
+ "epoch": 0.17135023989033585,
255
+ "grad_norm": 0.4648321866989136,
256
+ "learning_rate": 0.0001886223440712817,
257
+ "loss": 0.6272,
258
+ "mean_token_accuracy": 0.8493530780076981,
259
+ "num_tokens": 375717.0,
260
+ "step": 250
261
+ },
262
+ {
263
+ "entropy": 0.5467700261622668,
264
+ "epoch": 0.1782042494859493,
265
+ "grad_norm": 0.3487129211425781,
266
+ "learning_rate": 0.00018816541009824083,
267
+ "loss": 0.5449,
268
+ "mean_token_accuracy": 0.8526464059948922,
269
+ "num_tokens": 394586.0,
270
+ "step": 260
271
+ },
272
+ {
273
+ "entropy": 0.4246529323980212,
274
+ "epoch": 0.1850582590815627,
275
+ "grad_norm": 0.7286052703857422,
276
+ "learning_rate": 0.00018770847612519992,
277
+ "loss": 0.45,
278
+ "mean_token_accuracy": 0.8814342901110649,
279
+ "num_tokens": 411636.0,
280
+ "step": 270
281
+ },
282
+ {
283
+ "entropy": 0.5389048531651497,
284
+ "epoch": 0.19191226867717615,
285
+ "grad_norm": 0.3287123441696167,
286
+ "learning_rate": 0.00018725154215215904,
287
+ "loss": 0.5138,
288
+ "mean_token_accuracy": 0.8506704963743686,
289
+ "num_tokens": 427077.0,
290
+ "step": 280
291
+ },
292
+ {
293
+ "entropy": 0.5297756217420101,
294
+ "epoch": 0.1987662782727896,
295
+ "grad_norm": 0.5151430368423462,
296
+ "learning_rate": 0.00018679460817911812,
297
+ "loss": 0.5953,
298
+ "mean_token_accuracy": 0.8586609676480293,
299
+ "num_tokens": 442257.0,
300
+ "step": 290
301
+ },
302
+ {
303
+ "entropy": 0.5314730744808912,
304
+ "epoch": 0.20562028786840303,
305
+ "grad_norm": 0.9860548377037048,
306
+ "learning_rate": 0.00018633767420607724,
307
+ "loss": 0.5143,
308
+ "mean_token_accuracy": 0.8650062039494515,
309
+ "num_tokens": 458093.0,
310
+ "step": 300
311
+ },
312
+ {
313
+ "entropy": 0.5666845880448819,
314
+ "epoch": 0.21247429746401644,
315
+ "grad_norm": 0.8684160113334656,
316
+ "learning_rate": 0.00018588074023303635,
317
+ "loss": 0.5487,
318
+ "mean_token_accuracy": 0.8509581357240676,
319
+ "num_tokens": 471306.0,
320
+ "step": 310
321
+ },
322
+ {
323
+ "entropy": 0.5297997735440731,
324
+ "epoch": 0.21932830705962988,
325
+ "grad_norm": 0.3815328776836395,
326
+ "learning_rate": 0.00018542380625999544,
327
+ "loss": 0.6052,
328
+ "mean_token_accuracy": 0.8568633005023003,
329
+ "num_tokens": 488461.0,
330
+ "step": 320
331
+ },
332
+ {
333
+ "entropy": 0.5316725082695484,
334
+ "epoch": 0.22618231665524333,
335
+ "grad_norm": 0.5312303900718689,
336
+ "learning_rate": 0.00018496687228695456,
337
+ "loss": 0.6035,
338
+ "mean_token_accuracy": 0.858753177523613,
339
+ "num_tokens": 503665.0,
340
+ "step": 330
341
+ },
342
+ {
343
+ "entropy": 0.6088610142469406,
344
+ "epoch": 0.23303632625085674,
345
+ "grad_norm": 0.40660324692726135,
346
+ "learning_rate": 0.00018450993831391365,
347
+ "loss": 0.6232,
348
+ "mean_token_accuracy": 0.8444906592369079,
349
+ "num_tokens": 521925.0,
350
+ "step": 340
351
+ },
352
+ {
353
+ "entropy": 0.6339217025786639,
354
+ "epoch": 0.23989033584647018,
355
+ "grad_norm": 0.5640454888343811,
356
+ "learning_rate": 0.00018405300434087276,
357
+ "loss": 0.6188,
358
+ "mean_token_accuracy": 0.8382566079497338,
359
+ "num_tokens": 535970.0,
360
+ "step": 350
361
+ },
362
+ {
363
+ "entropy": 0.5411492632701993,
364
+ "epoch": 0.24674434544208362,
365
+ "grad_norm": 0.42631176114082336,
366
+ "learning_rate": 0.00018359607036783185,
367
+ "loss": 0.5528,
368
+ "mean_token_accuracy": 0.8523587495088577,
369
+ "num_tokens": 551676.0,
370
+ "step": 360
371
+ },
372
+ {
373
+ "entropy": 0.5561750333756208,
374
+ "epoch": 0.25359835503769707,
375
+ "grad_norm": 0.5579405426979065,
376
+ "learning_rate": 0.00018313913639479097,
377
+ "loss": 0.5793,
378
+ "mean_token_accuracy": 0.8607801914215087,
379
+ "num_tokens": 568488.0,
380
+ "step": 370
381
+ },
382
+ {
383
+ "entropy": 0.5319446712732315,
384
+ "epoch": 0.2604523646333105,
385
+ "grad_norm": 0.8342606425285339,
386
+ "learning_rate": 0.00018268220242175008,
387
+ "loss": 0.4994,
388
+ "mean_token_accuracy": 0.863979734480381,
389
+ "num_tokens": 582963.0,
390
+ "step": 380
391
+ },
392
+ {
393
+ "entropy": 0.5910112973302603,
394
+ "epoch": 0.2673063742289239,
395
+ "grad_norm": 0.5433372259140015,
396
+ "learning_rate": 0.00018222526844870917,
397
+ "loss": 0.6669,
398
+ "mean_token_accuracy": 0.8433835208415985,
399
+ "num_tokens": 598471.0,
400
+ "step": 390
401
+ },
402
+ {
403
+ "entropy": 0.46995992250740526,
404
+ "epoch": 0.27416038382453733,
405
+ "grad_norm": 0.26409879326820374,
406
+ "learning_rate": 0.00018176833447566828,
407
+ "loss": 0.5199,
408
+ "mean_token_accuracy": 0.87328050583601,
409
+ "num_tokens": 614036.0,
410
+ "step": 400
411
+ },
412
+ {
413
+ "entropy": 0.5400116696953774,
414
+ "epoch": 0.2810143934201508,
415
+ "grad_norm": 0.3498149514198303,
416
+ "learning_rate": 0.00018131140050262737,
417
+ "loss": 0.5902,
418
+ "mean_token_accuracy": 0.8512750566005707,
419
+ "num_tokens": 630937.0,
420
+ "step": 410
421
+ },
422
+ {
423
+ "entropy": 0.45603593066334724,
424
+ "epoch": 0.2878684030157642,
425
+ "grad_norm": 0.6973631978034973,
426
+ "learning_rate": 0.0001808544665295865,
427
+ "loss": 0.484,
428
+ "mean_token_accuracy": 0.8728810593485832,
429
+ "num_tokens": 642492.0,
430
+ "step": 420
431
+ },
432
+ {
433
+ "entropy": 0.5664497867226601,
434
+ "epoch": 0.29472241261137766,
435
+ "grad_norm": 0.4047413170337677,
436
+ "learning_rate": 0.0001803975325565456,
437
+ "loss": 0.5107,
438
+ "mean_token_accuracy": 0.8518401965498924,
439
+ "num_tokens": 656785.0,
440
+ "step": 430
441
+ },
442
+ {
443
+ "entropy": 0.5749023761600256,
444
+ "epoch": 0.3015764222069911,
445
+ "grad_norm": 0.5084949135780334,
446
+ "learning_rate": 0.0001799405985835047,
447
+ "loss": 0.5558,
448
+ "mean_token_accuracy": 0.8492432355880737,
449
+ "num_tokens": 671870.0,
450
+ "step": 440
451
+ },
452
+ {
453
+ "entropy": 0.4889295015484095,
454
+ "epoch": 0.30843043180260454,
455
+ "grad_norm": 0.42546579241752625,
456
+ "learning_rate": 0.0001794836646104638,
457
+ "loss": 0.5416,
458
+ "mean_token_accuracy": 0.8649413183331489,
459
+ "num_tokens": 685980.0,
460
+ "step": 450
461
+ },
462
+ {
463
+ "entropy": 0.5743775438517332,
464
+ "epoch": 0.315284441398218,
465
+ "grad_norm": 0.3708641231060028,
466
+ "learning_rate": 0.0001790267306374229,
467
+ "loss": 0.5976,
468
+ "mean_token_accuracy": 0.8467541456222534,
469
+ "num_tokens": 699287.0,
470
+ "step": 460
471
+ },
472
+ {
473
+ "entropy": 0.5913191799074411,
474
+ "epoch": 0.32213845099383137,
475
+ "grad_norm": 0.37332257628440857,
476
+ "learning_rate": 0.000178569796664382,
477
+ "loss": 0.5695,
478
+ "mean_token_accuracy": 0.8441656738519668,
479
+ "num_tokens": 714803.0,
480
+ "step": 470
481
+ },
482
+ {
483
+ "entropy": 0.45778534524142744,
484
+ "epoch": 0.3289924605894448,
485
+ "grad_norm": 0.5047005414962769,
486
+ "learning_rate": 0.0001781128626913411,
487
+ "loss": 0.4778,
488
+ "mean_token_accuracy": 0.8752694010734559,
489
+ "num_tokens": 732120.0,
490
+ "step": 480
491
+ },
492
+ {
493
+ "entropy": 0.5643713362514973,
494
+ "epoch": 0.33584647018505825,
495
+ "grad_norm": 0.4013417065143585,
496
+ "learning_rate": 0.0001776559287183002,
497
+ "loss": 0.5366,
498
+ "mean_token_accuracy": 0.8520827397704125,
499
+ "num_tokens": 745974.0,
500
+ "step": 490
501
+ },
502
+ {
503
+ "entropy": 0.4815288335084915,
504
+ "epoch": 0.3427004797806717,
505
+ "grad_norm": 0.3859888017177582,
506
+ "learning_rate": 0.00017719899474525933,
507
+ "loss": 0.5521,
508
+ "mean_token_accuracy": 0.8687581121921539,
509
+ "num_tokens": 759499.0,
510
+ "step": 500
511
+ },
512
+ {
513
+ "entropy": 0.5015339620411396,
514
+ "epoch": 0.34955448937628514,
515
+ "grad_norm": 0.6697199940681458,
516
+ "learning_rate": 0.00017674206077221842,
517
+ "loss": 0.4885,
518
+ "mean_token_accuracy": 0.8649638772010804,
519
+ "num_tokens": 773698.0,
520
+ "step": 510
521
+ },
522
+ {
523
+ "entropy": 0.6096027113497258,
524
+ "epoch": 0.3564084989718986,
525
+ "grad_norm": 1.021246075630188,
526
+ "learning_rate": 0.00017628512679917753,
527
+ "loss": 0.6121,
528
+ "mean_token_accuracy": 0.8394175350666047,
529
+ "num_tokens": 788221.0,
530
+ "step": 520
531
+ },
532
+ {
533
+ "entropy": 0.5186641301959753,
534
+ "epoch": 0.363262508567512,
535
+ "grad_norm": 0.8043237924575806,
536
+ "learning_rate": 0.00017582819282613662,
537
+ "loss": 0.5592,
538
+ "mean_token_accuracy": 0.8656348437070847,
539
+ "num_tokens": 802330.0,
540
+ "step": 530
541
+ },
542
+ {
543
+ "entropy": 0.6064855309203268,
544
+ "epoch": 0.3701165181631254,
545
+ "grad_norm": 0.43781760334968567,
546
+ "learning_rate": 0.00017537125885309574,
547
+ "loss": 0.5874,
548
+ "mean_token_accuracy": 0.8404153436422348,
549
+ "num_tokens": 819615.0,
550
+ "step": 540
551
+ },
552
+ {
553
+ "entropy": 0.5140635691583156,
554
+ "epoch": 0.37697052775873885,
555
+ "grad_norm": 0.7001516819000244,
556
+ "learning_rate": 0.00017491432488005482,
557
+ "loss": 0.5547,
558
+ "mean_token_accuracy": 0.8677607625722885,
559
+ "num_tokens": 835616.0,
560
+ "step": 550
561
+ },
562
+ {
563
+ "entropy": 0.4637599032372236,
564
+ "epoch": 0.3838245373543523,
565
+ "grad_norm": 0.38044923543930054,
566
+ "learning_rate": 0.00017445739090701394,
567
+ "loss": 0.5021,
568
+ "mean_token_accuracy": 0.87646614164114,
569
+ "num_tokens": 851065.0,
570
+ "step": 560
571
+ },
572
+ {
573
+ "entropy": 0.5091348428279161,
574
+ "epoch": 0.39067854694996573,
575
+ "grad_norm": 0.476380318403244,
576
+ "learning_rate": 0.00017400045693397305,
577
+ "loss": 0.7145,
578
+ "mean_token_accuracy": 0.8637179903686046,
579
+ "num_tokens": 866992.0,
580
+ "step": 570
581
+ },
582
+ {
583
+ "entropy": 0.5213964153081179,
584
+ "epoch": 0.3975325565455792,
585
+ "grad_norm": 0.3205454647541046,
586
+ "learning_rate": 0.00017354352296093214,
587
+ "loss": 0.5395,
588
+ "mean_token_accuracy": 0.8607370749115943,
589
+ "num_tokens": 881803.0,
590
+ "step": 580
591
+ },
592
+ {
593
+ "entropy": 0.619412742741406,
594
+ "epoch": 0.4043865661411926,
595
+ "grad_norm": 0.6068571209907532,
596
+ "learning_rate": 0.00017308658898789126,
597
+ "loss": 0.7504,
598
+ "mean_token_accuracy": 0.8409741953015327,
599
+ "num_tokens": 896283.0,
600
+ "step": 590
601
+ },
602
+ {
603
+ "entropy": 0.41873827911913397,
604
+ "epoch": 0.41124057573680606,
605
+ "grad_norm": 0.7212440371513367,
606
+ "learning_rate": 0.00017262965501485035,
607
+ "loss": 0.4416,
608
+ "mean_token_accuracy": 0.8842875167727471,
609
+ "num_tokens": 912255.0,
610
+ "step": 600
611
+ },
612
+ {
613
+ "entropy": 0.5398109834641218,
614
+ "epoch": 0.41809458533241944,
615
+ "grad_norm": 0.5380451083183289,
616
+ "learning_rate": 0.00017217272104180946,
617
+ "loss": 0.6092,
618
+ "mean_token_accuracy": 0.8535096302628518,
619
+ "num_tokens": 924648.0,
620
+ "step": 610
621
+ },
622
+ {
623
+ "entropy": 0.5522895563393831,
624
+ "epoch": 0.4249485949280329,
625
+ "grad_norm": 0.3073669373989105,
626
+ "learning_rate": 0.00017171578706876858,
627
+ "loss": 0.5943,
628
+ "mean_token_accuracy": 0.8548912346363068,
629
+ "num_tokens": 942485.0,
630
+ "step": 620
631
+ },
632
+ {
633
+ "entropy": 0.6571722824126482,
634
+ "epoch": 0.4318026045236463,
635
+ "grad_norm": 0.32408949732780457,
636
+ "learning_rate": 0.00017125885309572766,
637
+ "loss": 0.6485,
638
+ "mean_token_accuracy": 0.8336619213223457,
639
+ "num_tokens": 959239.0,
640
+ "step": 630
641
+ },
642
+ {
643
+ "entropy": 0.44382771104574203,
644
+ "epoch": 0.43865661411925977,
645
+ "grad_norm": 0.3714044988155365,
646
+ "learning_rate": 0.00017080191912268678,
647
+ "loss": 0.451,
648
+ "mean_token_accuracy": 0.8748382180929184,
649
+ "num_tokens": 971292.0,
650
+ "step": 640
651
+ },
652
+ {
653
+ "entropy": 0.5132732756435872,
654
+ "epoch": 0.4455106237148732,
655
+ "grad_norm": 0.39163199067115784,
656
+ "learning_rate": 0.00017034498514964587,
657
+ "loss": 0.5782,
658
+ "mean_token_accuracy": 0.8603680655360222,
659
+ "num_tokens": 986609.0,
660
+ "step": 650
661
+ },
662
+ {
663
+ "entropy": 0.6249308317899704,
664
+ "epoch": 0.45236463331048665,
665
+ "grad_norm": 0.9571526646614075,
666
+ "learning_rate": 0.00016988805117660498,
667
+ "loss": 0.6102,
668
+ "mean_token_accuracy": 0.8412078201770783,
669
+ "num_tokens": 1001886.0,
670
+ "step": 660
671
+ },
672
+ {
673
+ "entropy": 0.5879610646516085,
674
+ "epoch": 0.4592186429061001,
675
+ "grad_norm": 0.5797366499900818,
676
+ "learning_rate": 0.00016943111720356407,
677
+ "loss": 0.564,
678
+ "mean_token_accuracy": 0.8438061460852623,
679
+ "num_tokens": 1016026.0,
680
+ "step": 670
681
+ },
682
+ {
683
+ "entropy": 0.5628054179251194,
684
+ "epoch": 0.4660726525017135,
685
+ "grad_norm": 1.196199893951416,
686
+ "learning_rate": 0.0001689741832305232,
687
+ "loss": 0.5893,
688
+ "mean_token_accuracy": 0.8494728982448578,
689
+ "num_tokens": 1027357.0,
690
+ "step": 680
691
+ },
692
+ {
693
+ "entropy": 0.47301769629120827,
694
+ "epoch": 0.4729266620973269,
695
+ "grad_norm": 0.41828563809394836,
696
+ "learning_rate": 0.0001685172492574823,
697
+ "loss": 0.5013,
698
+ "mean_token_accuracy": 0.8767685040831565,
699
+ "num_tokens": 1042347.0,
700
+ "step": 690
701
+ },
702
+ {
703
+ "entropy": 0.5087582165375352,
704
+ "epoch": 0.47978067169294036,
705
+ "grad_norm": 0.36651521921157837,
706
+ "learning_rate": 0.00016806031528444142,
707
+ "loss": 0.5749,
708
+ "mean_token_accuracy": 0.8544954568147659,
709
+ "num_tokens": 1061719.0,
710
+ "step": 700
711
+ },
712
+ {
713
+ "entropy": 0.5259541615843772,
714
+ "epoch": 0.4866346812885538,
715
+ "grad_norm": 0.5560138821601868,
716
+ "learning_rate": 0.00016760338131140053,
717
+ "loss": 0.5649,
718
+ "mean_token_accuracy": 0.860032057762146,
719
+ "num_tokens": 1075339.0,
720
+ "step": 710
721
+ },
722
+ {
723
+ "entropy": 0.4655290380120277,
724
+ "epoch": 0.49348869088416725,
725
+ "grad_norm": 0.37081801891326904,
726
+ "learning_rate": 0.00016714644733835962,
727
+ "loss": 0.5218,
728
+ "mean_token_accuracy": 0.8754615411162376,
729
+ "num_tokens": 1089873.0,
730
+ "step": 720
731
+ },
732
+ {
733
+ "entropy": 0.5236123736947775,
734
+ "epoch": 0.5003427004797807,
735
+ "grad_norm": 0.4931930899620056,
736
+ "learning_rate": 0.00016668951336531874,
737
+ "loss": 0.5333,
738
+ "mean_token_accuracy": 0.8595968760550022,
739
+ "num_tokens": 1107924.0,
740
+ "step": 730
741
+ },
742
+ {
743
+ "entropy": 0.5846156869083643,
744
+ "epoch": 0.5071967100753941,
745
+ "grad_norm": 0.47382351756095886,
746
+ "learning_rate": 0.00016623257939227782,
747
+ "loss": 0.6035,
748
+ "mean_token_accuracy": 0.8439710319042206,
749
+ "num_tokens": 1123755.0,
750
+ "step": 740
751
+ },
752
+ {
753
+ "entropy": 0.5500952435657382,
754
+ "epoch": 0.5140507196710076,
755
+ "grad_norm": 0.5050795674324036,
756
+ "learning_rate": 0.00016577564541923694,
757
+ "loss": 0.6073,
758
+ "mean_token_accuracy": 0.8468502178788185,
759
+ "num_tokens": 1138565.0,
760
+ "step": 750
761
+ },
762
+ {
763
+ "entropy": 0.5514631005004048,
764
+ "epoch": 0.520904729266621,
765
+ "grad_norm": 0.5656992793083191,
766
+ "learning_rate": 0.00016531871144619603,
767
+ "loss": 0.5075,
768
+ "mean_token_accuracy": 0.8544194102287292,
769
+ "num_tokens": 1157676.0,
770
+ "step": 760
771
+ },
772
+ {
773
+ "entropy": 0.49982974790036677,
774
+ "epoch": 0.5277587388622345,
775
+ "grad_norm": 0.4955768585205078,
776
+ "learning_rate": 0.00016486177747315514,
777
+ "loss": 0.5041,
778
+ "mean_token_accuracy": 0.8634250342845917,
779
+ "num_tokens": 1174042.0,
780
+ "step": 770
781
+ },
782
+ {
783
+ "entropy": 0.5862449683248997,
784
+ "epoch": 0.5346127484578478,
785
+ "grad_norm": 0.5951958298683167,
786
+ "learning_rate": 0.00016440484350011426,
787
+ "loss": 0.5804,
788
+ "mean_token_accuracy": 0.8448848068714142,
789
+ "num_tokens": 1190184.0,
790
+ "step": 780
791
+ },
792
+ {
793
+ "entropy": 0.4969827888533473,
794
+ "epoch": 0.5414667580534612,
795
+ "grad_norm": 0.4006407856941223,
796
+ "learning_rate": 0.00016394790952707335,
797
+ "loss": 0.5379,
798
+ "mean_token_accuracy": 0.8700526058673859,
799
+ "num_tokens": 1205954.0,
800
+ "step": 790
801
+ },
802
+ {
803
+ "entropy": 0.5849012348800897,
804
+ "epoch": 0.5483207676490747,
805
+ "grad_norm": 0.624742329120636,
806
+ "learning_rate": 0.00016349097555403246,
807
+ "loss": 0.6361,
808
+ "mean_token_accuracy": 0.8400089010596276,
809
+ "num_tokens": 1220942.0,
810
+ "step": 800
811
+ },
812
+ {
813
+ "entropy": 0.5625248458236456,
814
+ "epoch": 0.5551747772446881,
815
+ "grad_norm": 1.40684974193573,
816
+ "learning_rate": 0.00016303404158099155,
817
+ "loss": 0.6314,
818
+ "mean_token_accuracy": 0.8519342541694641,
819
+ "num_tokens": 1236644.0,
820
+ "step": 810
821
+ },
822
+ {
823
+ "entropy": 0.49897886253893375,
824
+ "epoch": 0.5620287868403016,
825
+ "grad_norm": 0.5541409850120544,
826
+ "learning_rate": 0.00016257710760795067,
827
+ "loss": 0.5443,
828
+ "mean_token_accuracy": 0.8650717407464981,
829
+ "num_tokens": 1252654.0,
830
+ "step": 820
831
+ },
832
+ {
833
+ "entropy": 0.4627639502286911,
834
+ "epoch": 0.568882796435915,
835
+ "grad_norm": 0.48005378246307373,
836
+ "learning_rate": 0.00016212017363490975,
837
+ "loss": 0.5117,
838
+ "mean_token_accuracy": 0.8780093342065811,
839
+ "num_tokens": 1267484.0,
840
+ "step": 830
841
+ },
842
+ {
843
+ "entropy": 0.5190326888114214,
844
+ "epoch": 0.5757368060315284,
845
+ "grad_norm": 0.6706176400184631,
846
+ "learning_rate": 0.00016166323966186887,
847
+ "loss": 0.5251,
848
+ "mean_token_accuracy": 0.8629909038543702,
849
+ "num_tokens": 1282022.0,
850
+ "step": 840
851
+ },
852
+ {
853
+ "entropy": 0.5338688423857093,
854
+ "epoch": 0.5825908156271419,
855
+ "grad_norm": 0.5225579738616943,
856
+ "learning_rate": 0.00016120630568882798,
857
+ "loss": 0.5929,
858
+ "mean_token_accuracy": 0.856892392039299,
859
+ "num_tokens": 1296087.0,
860
+ "step": 850
861
+ },
862
+ {
863
+ "entropy": 0.49688454922288655,
864
+ "epoch": 0.5894448252227553,
865
+ "grad_norm": 0.26188451051712036,
866
+ "learning_rate": 0.00016074937171578707,
867
+ "loss": 0.6414,
868
+ "mean_token_accuracy": 0.8633167922496796,
869
+ "num_tokens": 1313509.0,
870
+ "step": 860
871
+ },
872
+ {
873
+ "entropy": 0.5256685543805361,
874
+ "epoch": 0.5962988348183688,
875
+ "grad_norm": 0.6064833998680115,
876
+ "learning_rate": 0.0001602924377427462,
877
+ "loss": 0.4999,
878
+ "mean_token_accuracy": 0.8630939826369286,
879
+ "num_tokens": 1328689.0,
880
+ "step": 870
881
+ },
882
+ {
883
+ "entropy": 0.5231131825596094,
884
+ "epoch": 0.6031528444139822,
885
+ "grad_norm": 0.4005596339702606,
886
+ "learning_rate": 0.00015983550376970528,
887
+ "loss": 0.5431,
888
+ "mean_token_accuracy": 0.8552977308630944,
889
+ "num_tokens": 1345534.0,
890
+ "step": 880
891
+ },
892
+ {
893
+ "entropy": 0.5158163897693158,
894
+ "epoch": 0.6100068540095956,
895
+ "grad_norm": 0.8037022948265076,
896
+ "learning_rate": 0.0001593785697966644,
897
+ "loss": 0.6514,
898
+ "mean_token_accuracy": 0.8581083044409752,
899
+ "num_tokens": 1361497.0,
900
+ "step": 890
901
+ },
902
+ {
903
+ "entropy": 0.4985586106777191,
904
+ "epoch": 0.6168608636052091,
905
+ "grad_norm": 0.38318124413490295,
906
+ "learning_rate": 0.0001589216358236235,
907
+ "loss": 0.5226,
908
+ "mean_token_accuracy": 0.8698930114507675,
909
+ "num_tokens": 1376582.0,
910
+ "step": 900
911
+ },
912
+ {
913
+ "entropy": 0.505715012550354,
914
+ "epoch": 0.6237148732008225,
915
+ "grad_norm": 0.39991825819015503,
916
+ "learning_rate": 0.0001584647018505826,
917
+ "loss": 0.5799,
918
+ "mean_token_accuracy": 0.8601746618747711,
919
+ "num_tokens": 1393099.0,
920
+ "step": 910
921
+ },
922
+ {
923
+ "entropy": 0.5512417580932378,
924
+ "epoch": 0.630568882796436,
925
+ "grad_norm": 0.3564458191394806,
926
+ "learning_rate": 0.0001580077678775417,
927
+ "loss": 0.6042,
928
+ "mean_token_accuracy": 0.8542352899909019,
929
+ "num_tokens": 1405413.0,
930
+ "step": 920
931
+ },
932
+ {
933
+ "entropy": 0.6023517435416579,
934
+ "epoch": 0.6374228923920493,
935
+ "grad_norm": 0.5077884197235107,
936
+ "learning_rate": 0.0001575508339045008,
937
+ "loss": 0.5491,
938
+ "mean_token_accuracy": 0.8345923721790314,
939
+ "num_tokens": 1420630.0,
940
+ "step": 930
941
+ },
942
+ {
943
+ "entropy": 0.45138914659619334,
944
+ "epoch": 0.6442769019876627,
945
+ "grad_norm": 0.526972234249115,
946
+ "learning_rate": 0.00015709389993145991,
947
+ "loss": 0.4937,
948
+ "mean_token_accuracy": 0.8770761311054229,
949
+ "num_tokens": 1434843.0,
950
+ "step": 940
951
+ },
952
+ {
953
+ "entropy": 0.5025592448189855,
954
+ "epoch": 0.6511309115832762,
955
+ "grad_norm": 0.33170071244239807,
956
+ "learning_rate": 0.000156636965958419,
957
+ "loss": 0.6154,
958
+ "mean_token_accuracy": 0.8634001970291137,
959
+ "num_tokens": 1451288.0,
960
+ "step": 950
961
+ },
962
+ {
963
+ "entropy": 0.4892792083323002,
964
+ "epoch": 0.6579849211788896,
965
+ "grad_norm": 0.5489900708198547,
966
+ "learning_rate": 0.00015618003198537812,
967
+ "loss": 0.4766,
968
+ "mean_token_accuracy": 0.8682720705866813,
969
+ "num_tokens": 1461993.0,
970
+ "step": 960
971
+ },
972
+ {
973
+ "entropy": 0.45295149497687814,
974
+ "epoch": 0.6648389307745031,
975
+ "grad_norm": 0.4360350966453552,
976
+ "learning_rate": 0.00015572309801233723,
977
+ "loss": 0.4526,
978
+ "mean_token_accuracy": 0.8701859056949616,
979
+ "num_tokens": 1476768.0,
980
+ "step": 970
981
+ },
982
+ {
983
+ "entropy": 0.5168599784374237,
984
+ "epoch": 0.6716929403701165,
985
+ "grad_norm": 0.6106163263320923,
986
+ "learning_rate": 0.00015526616403929632,
987
+ "loss": 0.5304,
988
+ "mean_token_accuracy": 0.8633713632822037,
989
+ "num_tokens": 1490815.0,
990
+ "step": 980
991
+ },
992
+ {
993
+ "entropy": 0.5374733801931143,
994
+ "epoch": 0.67854694996573,
995
+ "grad_norm": 0.6627058982849121,
996
+ "learning_rate": 0.00015480923006625544,
997
+ "loss": 0.6159,
998
+ "mean_token_accuracy": 0.8490797847509384,
999
+ "num_tokens": 1509112.0,
1000
+ "step": 990
1001
+ },
1002
+ {
1003
+ "entropy": 0.4429541861638427,
1004
+ "epoch": 0.6854009595613434,
1005
+ "grad_norm": 0.4334024488925934,
1006
+ "learning_rate": 0.00015435229609321452,
1007
+ "loss": 0.4791,
1008
+ "mean_token_accuracy": 0.8743316605687141,
1009
+ "num_tokens": 1525280.0,
1010
+ "step": 1000
1011
+ }
1012
+ ],
1013
+ "logging_steps": 10,
1014
+ "max_steps": 4377,
1015
+ "num_input_tokens_seen": 0,
1016
+ "num_train_epochs": 3,
1017
+ "save_steps": 500,
1018
+ "stateful_callbacks": {
1019
+ "TrainerControl": {
1020
+ "args": {
1021
+ "should_epoch_stop": false,
1022
+ "should_evaluate": false,
1023
+ "should_log": false,
1024
+ "should_save": true,
1025
+ "should_training_stop": false
1026
+ },
1027
+ "attributes": {}
1028
+ }
1029
+ },
1030
+ "total_flos": 1.216080158343168e+16,
1031
+ "train_batch_size": 1,
1032
+ "trial_name": null,
1033
+ "trial_params": null
1034
+ }
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e35abf182dc324387421804686ff27bf5fc036bcc19d753744e040da3f1f0f0
3
+ size 5521
checkpoint-1000/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1500/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Qwen/Qwen2.5-Coder-1.5B-Instruct
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.17.1
checkpoint-1500/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-1.5B-Instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "v_proj",
29
+ "gate_proj",
30
+ "up_proj",
31
+ "o_proj",
32
+ "down_proj",
33
+ "k_proj",
34
+ "q_proj"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-1500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be6254c0c75d7fe34811ed1fd4d05f06db301a4f46507c15e80cbd4b8d633cde
3
+ size 73911112
checkpoint-1500/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-1500/chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
checkpoint-1500/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b925a7e1e413f25ca72da2532bf69da81549c42590cbb3f51cd295dec01bf285
3
+ size 148053627
checkpoint-1500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b631e7cbd46cc42cef036137c42a813d17a68fda54a0bd44e9964478b339f511
3
+ size 14645
checkpoint-1500/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca372268f4fa9335030c0cb7aedb6cdba75f457da50e7a4034abb1a2d0843689
3
+ size 1383
checkpoint-1500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97e10a4cee442231713caff234abcaf5655410bb6238c67830cb076d1ea12d54
3
+ size 1465
checkpoint-1500/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-1500/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-1500/tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 32768,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
checkpoint-1500/trainer_state.json ADDED
@@ -0,0 +1,1534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0281014393420151,
6
+ "eval_steps": 500,
7
+ "global_step": 1500,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "entropy": 0.9619973443448544,
14
+ "epoch": 0.006854009595613434,
15
+ "grad_norm": 0.8562721610069275,
16
+ "learning_rate": 0.0001995887594242632,
17
+ "loss": 0.7973,
18
+ "mean_token_accuracy": 0.7519877135753632,
19
+ "num_tokens": 15771.0,
20
+ "step": 10
21
+ },
22
+ {
23
+ "entropy": 0.7034977793693542,
24
+ "epoch": 0.013708019191226868,
25
+ "grad_norm": 0.5451128482818604,
26
+ "learning_rate": 0.0001991318254512223,
27
+ "loss": 0.5986,
28
+ "mean_token_accuracy": 0.8309322476387024,
29
+ "num_tokens": 33062.0,
30
+ "step": 20
31
+ },
32
+ {
33
+ "entropy": 0.6603402759879827,
34
+ "epoch": 0.0205620287868403,
35
+ "grad_norm": 0.5171676278114319,
36
+ "learning_rate": 0.00019867489147818142,
37
+ "loss": 0.633,
38
+ "mean_token_accuracy": 0.8433935061097145,
39
+ "num_tokens": 48936.0,
40
+ "step": 30
41
+ },
42
+ {
43
+ "entropy": 0.6830728624016047,
44
+ "epoch": 0.027416038382453736,
45
+ "grad_norm": 0.4969835877418518,
46
+ "learning_rate": 0.0001982179575051405,
47
+ "loss": 0.6773,
48
+ "mean_token_accuracy": 0.8266744241118431,
49
+ "num_tokens": 61449.0,
50
+ "step": 40
51
+ },
52
+ {
53
+ "entropy": 0.5286078054457903,
54
+ "epoch": 0.03427004797806717,
55
+ "grad_norm": 0.44698312878608704,
56
+ "learning_rate": 0.00019776102353209963,
57
+ "loss": 0.5558,
58
+ "mean_token_accuracy": 0.8533428102731705,
59
+ "num_tokens": 77104.0,
60
+ "step": 50
61
+ },
62
+ {
63
+ "entropy": 0.5590948283672332,
64
+ "epoch": 0.0411240575736806,
65
+ "grad_norm": 0.38724300265312195,
66
+ "learning_rate": 0.00019730408955905872,
67
+ "loss": 0.5771,
68
+ "mean_token_accuracy": 0.8514142513275147,
69
+ "num_tokens": 91558.0,
70
+ "step": 60
71
+ },
72
+ {
73
+ "entropy": 0.599293502047658,
74
+ "epoch": 0.047978067169294036,
75
+ "grad_norm": 0.5922872424125671,
76
+ "learning_rate": 0.00019684715558601783,
77
+ "loss": 0.5309,
78
+ "mean_token_accuracy": 0.851950392127037,
79
+ "num_tokens": 105756.0,
80
+ "step": 70
81
+ },
82
+ {
83
+ "entropy": 0.6024694256484509,
84
+ "epoch": 0.05483207676490747,
85
+ "grad_norm": 0.5078150629997253,
86
+ "learning_rate": 0.00019639022161297692,
87
+ "loss": 0.6727,
88
+ "mean_token_accuracy": 0.8480887472629547,
89
+ "num_tokens": 120163.0,
90
+ "step": 80
91
+ },
92
+ {
93
+ "entropy": 0.5648054199293255,
94
+ "epoch": 0.061686086360520906,
95
+ "grad_norm": 0.29077377915382385,
96
+ "learning_rate": 0.00019593328763993604,
97
+ "loss": 0.5509,
98
+ "mean_token_accuracy": 0.8548661589622497,
99
+ "num_tokens": 138293.0,
100
+ "step": 90
101
+ },
102
+ {
103
+ "entropy": 0.5659369576722384,
104
+ "epoch": 0.06854009595613433,
105
+ "grad_norm": 0.3394547700881958,
106
+ "learning_rate": 0.00019547635366689515,
107
+ "loss": 0.5729,
108
+ "mean_token_accuracy": 0.8460367009043693,
109
+ "num_tokens": 157530.0,
110
+ "step": 100
111
+ },
112
+ {
113
+ "entropy": 0.6021960902959108,
114
+ "epoch": 0.07539410555174778,
115
+ "grad_norm": 0.42912933230400085,
116
+ "learning_rate": 0.00019501941969385424,
117
+ "loss": 0.5465,
118
+ "mean_token_accuracy": 0.851969163119793,
119
+ "num_tokens": 170607.0,
120
+ "step": 110
121
+ },
122
+ {
123
+ "entropy": 0.610968679189682,
124
+ "epoch": 0.0822481151473612,
125
+ "grad_norm": 0.3759806752204895,
126
+ "learning_rate": 0.00019456248572081335,
127
+ "loss": 0.632,
128
+ "mean_token_accuracy": 0.83554507791996,
129
+ "num_tokens": 185672.0,
130
+ "step": 120
131
+ },
132
+ {
133
+ "entropy": 0.5211818940937519,
134
+ "epoch": 0.08910212474297464,
135
+ "grad_norm": 0.503212034702301,
136
+ "learning_rate": 0.00019410555174777244,
137
+ "loss": 0.547,
138
+ "mean_token_accuracy": 0.8610908895730972,
139
+ "num_tokens": 200482.0,
140
+ "step": 130
141
+ },
142
+ {
143
+ "entropy": 0.4536220826208591,
144
+ "epoch": 0.09595613433858807,
145
+ "grad_norm": 0.7268697619438171,
146
+ "learning_rate": 0.00019364861777473156,
147
+ "loss": 0.4726,
148
+ "mean_token_accuracy": 0.870763523876667,
149
+ "num_tokens": 216537.0,
150
+ "step": 140
151
+ },
152
+ {
153
+ "entropy": 0.5031640276312828,
154
+ "epoch": 0.10281014393420151,
155
+ "grad_norm": 0.33594396710395813,
156
+ "learning_rate": 0.00019319168380169065,
157
+ "loss": 0.5923,
158
+ "mean_token_accuracy": 0.8628711074590683,
159
+ "num_tokens": 232400.0,
160
+ "step": 150
161
+ },
162
+ {
163
+ "entropy": 0.6555169004946947,
164
+ "epoch": 0.10966415352981494,
165
+ "grad_norm": 0.5894250869750977,
166
+ "learning_rate": 0.00019273474982864976,
167
+ "loss": 0.5634,
168
+ "mean_token_accuracy": 0.838917362689972,
169
+ "num_tokens": 244273.0,
170
+ "step": 160
171
+ },
172
+ {
173
+ "entropy": 0.6185528110712767,
174
+ "epoch": 0.11651816312542837,
175
+ "grad_norm": 0.5221670269966125,
176
+ "learning_rate": 0.00019227781585560888,
177
+ "loss": 0.6818,
178
+ "mean_token_accuracy": 0.8385803163051605,
179
+ "num_tokens": 262927.0,
180
+ "step": 170
181
+ },
182
+ {
183
+ "entropy": 0.43512718714773657,
184
+ "epoch": 0.12337217272104181,
185
+ "grad_norm": 0.4728280007839203,
186
+ "learning_rate": 0.00019182088188256796,
187
+ "loss": 0.5178,
188
+ "mean_token_accuracy": 0.8747259676456451,
189
+ "num_tokens": 271716.0,
190
+ "step": 180
191
+ },
192
+ {
193
+ "entropy": 0.6649946108460426,
194
+ "epoch": 0.13022618231665525,
195
+ "grad_norm": 0.47320684790611267,
196
+ "learning_rate": 0.00019136394790952708,
197
+ "loss": 0.6651,
198
+ "mean_token_accuracy": 0.8223798260092735,
199
+ "num_tokens": 287518.0,
200
+ "step": 190
201
+ },
202
+ {
203
+ "entropy": 0.44864910580217837,
204
+ "epoch": 0.13708019191226867,
205
+ "grad_norm": 0.4356485903263092,
206
+ "learning_rate": 0.00019090701393648617,
207
+ "loss": 0.4631,
208
+ "mean_token_accuracy": 0.8835410609841347,
209
+ "num_tokens": 306299.0,
210
+ "step": 200
211
+ },
212
+ {
213
+ "entropy": 0.5033049076795578,
214
+ "epoch": 0.1439342015078821,
215
+ "grad_norm": 0.48287737369537354,
216
+ "learning_rate": 0.00019045007996344528,
217
+ "loss": 0.5933,
218
+ "mean_token_accuracy": 0.8669374987483025,
219
+ "num_tokens": 321955.0,
220
+ "step": 210
221
+ },
222
+ {
223
+ "entropy": 0.43575111888349055,
224
+ "epoch": 0.15078821110349555,
225
+ "grad_norm": 0.5973707437515259,
226
+ "learning_rate": 0.0001899931459904044,
227
+ "loss": 0.4856,
228
+ "mean_token_accuracy": 0.8797904253005981,
229
+ "num_tokens": 332265.0,
230
+ "step": 220
231
+ },
232
+ {
233
+ "entropy": 0.6193726476281881,
234
+ "epoch": 0.157642220699109,
235
+ "grad_norm": 0.28756600618362427,
236
+ "learning_rate": 0.0001895362120173635,
237
+ "loss": 0.6056,
238
+ "mean_token_accuracy": 0.8307039767503739,
239
+ "num_tokens": 346377.0,
240
+ "step": 230
241
+ },
242
+ {
243
+ "entropy": 0.5753613166511059,
244
+ "epoch": 0.1644962302947224,
245
+ "grad_norm": 0.4320402145385742,
246
+ "learning_rate": 0.0001890792780443226,
247
+ "loss": 0.5834,
248
+ "mean_token_accuracy": 0.8549783885478973,
249
+ "num_tokens": 362964.0,
250
+ "step": 240
251
+ },
252
+ {
253
+ "entropy": 0.5963706407696009,
254
+ "epoch": 0.17135023989033585,
255
+ "grad_norm": 0.4648321866989136,
256
+ "learning_rate": 0.0001886223440712817,
257
+ "loss": 0.6272,
258
+ "mean_token_accuracy": 0.8493530780076981,
259
+ "num_tokens": 375717.0,
260
+ "step": 250
261
+ },
262
+ {
263
+ "entropy": 0.5467700261622668,
264
+ "epoch": 0.1782042494859493,
265
+ "grad_norm": 0.3487129211425781,
266
+ "learning_rate": 0.00018816541009824083,
267
+ "loss": 0.5449,
268
+ "mean_token_accuracy": 0.8526464059948922,
269
+ "num_tokens": 394586.0,
270
+ "step": 260
271
+ },
272
+ {
273
+ "entropy": 0.4246529323980212,
274
+ "epoch": 0.1850582590815627,
275
+ "grad_norm": 0.7286052703857422,
276
+ "learning_rate": 0.00018770847612519992,
277
+ "loss": 0.45,
278
+ "mean_token_accuracy": 0.8814342901110649,
279
+ "num_tokens": 411636.0,
280
+ "step": 270
281
+ },
282
+ {
283
+ "entropy": 0.5389048531651497,
284
+ "epoch": 0.19191226867717615,
285
+ "grad_norm": 0.3287123441696167,
286
+ "learning_rate": 0.00018725154215215904,
287
+ "loss": 0.5138,
288
+ "mean_token_accuracy": 0.8506704963743686,
289
+ "num_tokens": 427077.0,
290
+ "step": 280
291
+ },
292
+ {
293
+ "entropy": 0.5297756217420101,
294
+ "epoch": 0.1987662782727896,
295
+ "grad_norm": 0.5151430368423462,
296
+ "learning_rate": 0.00018679460817911812,
297
+ "loss": 0.5953,
298
+ "mean_token_accuracy": 0.8586609676480293,
299
+ "num_tokens": 442257.0,
300
+ "step": 290
301
+ },
302
+ {
303
+ "entropy": 0.5314730744808912,
304
+ "epoch": 0.20562028786840303,
305
+ "grad_norm": 0.9860548377037048,
306
+ "learning_rate": 0.00018633767420607724,
307
+ "loss": 0.5143,
308
+ "mean_token_accuracy": 0.8650062039494515,
309
+ "num_tokens": 458093.0,
310
+ "step": 300
311
+ },
312
+ {
313
+ "entropy": 0.5666845880448819,
314
+ "epoch": 0.21247429746401644,
315
+ "grad_norm": 0.8684160113334656,
316
+ "learning_rate": 0.00018588074023303635,
317
+ "loss": 0.5487,
318
+ "mean_token_accuracy": 0.8509581357240676,
319
+ "num_tokens": 471306.0,
320
+ "step": 310
321
+ },
322
+ {
323
+ "entropy": 0.5297997735440731,
324
+ "epoch": 0.21932830705962988,
325
+ "grad_norm": 0.3815328776836395,
326
+ "learning_rate": 0.00018542380625999544,
327
+ "loss": 0.6052,
328
+ "mean_token_accuracy": 0.8568633005023003,
329
+ "num_tokens": 488461.0,
330
+ "step": 320
331
+ },
332
+ {
333
+ "entropy": 0.5316725082695484,
334
+ "epoch": 0.22618231665524333,
335
+ "grad_norm": 0.5312303900718689,
336
+ "learning_rate": 0.00018496687228695456,
337
+ "loss": 0.6035,
338
+ "mean_token_accuracy": 0.858753177523613,
339
+ "num_tokens": 503665.0,
340
+ "step": 330
341
+ },
342
+ {
343
+ "entropy": 0.6088610142469406,
344
+ "epoch": 0.23303632625085674,
345
+ "grad_norm": 0.40660324692726135,
346
+ "learning_rate": 0.00018450993831391365,
347
+ "loss": 0.6232,
348
+ "mean_token_accuracy": 0.8444906592369079,
349
+ "num_tokens": 521925.0,
350
+ "step": 340
351
+ },
352
+ {
353
+ "entropy": 0.6339217025786639,
354
+ "epoch": 0.23989033584647018,
355
+ "grad_norm": 0.5640454888343811,
356
+ "learning_rate": 0.00018405300434087276,
357
+ "loss": 0.6188,
358
+ "mean_token_accuracy": 0.8382566079497338,
359
+ "num_tokens": 535970.0,
360
+ "step": 350
361
+ },
362
+ {
363
+ "entropy": 0.5411492632701993,
364
+ "epoch": 0.24674434544208362,
365
+ "grad_norm": 0.42631176114082336,
366
+ "learning_rate": 0.00018359607036783185,
367
+ "loss": 0.5528,
368
+ "mean_token_accuracy": 0.8523587495088577,
369
+ "num_tokens": 551676.0,
370
+ "step": 360
371
+ },
372
+ {
373
+ "entropy": 0.5561750333756208,
374
+ "epoch": 0.25359835503769707,
375
+ "grad_norm": 0.5579405426979065,
376
+ "learning_rate": 0.00018313913639479097,
377
+ "loss": 0.5793,
378
+ "mean_token_accuracy": 0.8607801914215087,
379
+ "num_tokens": 568488.0,
380
+ "step": 370
381
+ },
382
+ {
383
+ "entropy": 0.5319446712732315,
384
+ "epoch": 0.2604523646333105,
385
+ "grad_norm": 0.8342606425285339,
386
+ "learning_rate": 0.00018268220242175008,
387
+ "loss": 0.4994,
388
+ "mean_token_accuracy": 0.863979734480381,
389
+ "num_tokens": 582963.0,
390
+ "step": 380
391
+ },
392
+ {
393
+ "entropy": 0.5910112973302603,
394
+ "epoch": 0.2673063742289239,
395
+ "grad_norm": 0.5433372259140015,
396
+ "learning_rate": 0.00018222526844870917,
397
+ "loss": 0.6669,
398
+ "mean_token_accuracy": 0.8433835208415985,
399
+ "num_tokens": 598471.0,
400
+ "step": 390
401
+ },
402
+ {
403
+ "entropy": 0.46995992250740526,
404
+ "epoch": 0.27416038382453733,
405
+ "grad_norm": 0.26409879326820374,
406
+ "learning_rate": 0.00018176833447566828,
407
+ "loss": 0.5199,
408
+ "mean_token_accuracy": 0.87328050583601,
409
+ "num_tokens": 614036.0,
410
+ "step": 400
411
+ },
412
+ {
413
+ "entropy": 0.5400116696953774,
414
+ "epoch": 0.2810143934201508,
415
+ "grad_norm": 0.3498149514198303,
416
+ "learning_rate": 0.00018131140050262737,
417
+ "loss": 0.5902,
418
+ "mean_token_accuracy": 0.8512750566005707,
419
+ "num_tokens": 630937.0,
420
+ "step": 410
421
+ },
422
+ {
423
+ "entropy": 0.45603593066334724,
424
+ "epoch": 0.2878684030157642,
425
+ "grad_norm": 0.6973631978034973,
426
+ "learning_rate": 0.0001808544665295865,
427
+ "loss": 0.484,
428
+ "mean_token_accuracy": 0.8728810593485832,
429
+ "num_tokens": 642492.0,
430
+ "step": 420
431
+ },
432
+ {
433
+ "entropy": 0.5664497867226601,
434
+ "epoch": 0.29472241261137766,
435
+ "grad_norm": 0.4047413170337677,
436
+ "learning_rate": 0.0001803975325565456,
437
+ "loss": 0.5107,
438
+ "mean_token_accuracy": 0.8518401965498924,
439
+ "num_tokens": 656785.0,
440
+ "step": 430
441
+ },
442
+ {
443
+ "entropy": 0.5749023761600256,
444
+ "epoch": 0.3015764222069911,
445
+ "grad_norm": 0.5084949135780334,
446
+ "learning_rate": 0.0001799405985835047,
447
+ "loss": 0.5558,
448
+ "mean_token_accuracy": 0.8492432355880737,
449
+ "num_tokens": 671870.0,
450
+ "step": 440
451
+ },
452
+ {
453
+ "entropy": 0.4889295015484095,
454
+ "epoch": 0.30843043180260454,
455
+ "grad_norm": 0.42546579241752625,
456
+ "learning_rate": 0.0001794836646104638,
457
+ "loss": 0.5416,
458
+ "mean_token_accuracy": 0.8649413183331489,
459
+ "num_tokens": 685980.0,
460
+ "step": 450
461
+ },
462
+ {
463
+ "entropy": 0.5743775438517332,
464
+ "epoch": 0.315284441398218,
465
+ "grad_norm": 0.3708641231060028,
466
+ "learning_rate": 0.0001790267306374229,
467
+ "loss": 0.5976,
468
+ "mean_token_accuracy": 0.8467541456222534,
469
+ "num_tokens": 699287.0,
470
+ "step": 460
471
+ },
472
+ {
473
+ "entropy": 0.5913191799074411,
474
+ "epoch": 0.32213845099383137,
475
+ "grad_norm": 0.37332257628440857,
476
+ "learning_rate": 0.000178569796664382,
477
+ "loss": 0.5695,
478
+ "mean_token_accuracy": 0.8441656738519668,
479
+ "num_tokens": 714803.0,
480
+ "step": 470
481
+ },
482
+ {
483
+ "entropy": 0.45778534524142744,
484
+ "epoch": 0.3289924605894448,
485
+ "grad_norm": 0.5047005414962769,
486
+ "learning_rate": 0.0001781128626913411,
487
+ "loss": 0.4778,
488
+ "mean_token_accuracy": 0.8752694010734559,
489
+ "num_tokens": 732120.0,
490
+ "step": 480
491
+ },
492
+ {
493
+ "entropy": 0.5643713362514973,
494
+ "epoch": 0.33584647018505825,
495
+ "grad_norm": 0.4013417065143585,
496
+ "learning_rate": 0.0001776559287183002,
497
+ "loss": 0.5366,
498
+ "mean_token_accuracy": 0.8520827397704125,
499
+ "num_tokens": 745974.0,
500
+ "step": 490
501
+ },
502
+ {
503
+ "entropy": 0.4815288335084915,
504
+ "epoch": 0.3427004797806717,
505
+ "grad_norm": 0.3859888017177582,
506
+ "learning_rate": 0.00017719899474525933,
507
+ "loss": 0.5521,
508
+ "mean_token_accuracy": 0.8687581121921539,
509
+ "num_tokens": 759499.0,
510
+ "step": 500
511
+ },
512
+ {
513
+ "entropy": 0.5015339620411396,
514
+ "epoch": 0.34955448937628514,
515
+ "grad_norm": 0.6697199940681458,
516
+ "learning_rate": 0.00017674206077221842,
517
+ "loss": 0.4885,
518
+ "mean_token_accuracy": 0.8649638772010804,
519
+ "num_tokens": 773698.0,
520
+ "step": 510
521
+ },
522
+ {
523
+ "entropy": 0.6096027113497258,
524
+ "epoch": 0.3564084989718986,
525
+ "grad_norm": 1.021246075630188,
526
+ "learning_rate": 0.00017628512679917753,
527
+ "loss": 0.6121,
528
+ "mean_token_accuracy": 0.8394175350666047,
529
+ "num_tokens": 788221.0,
530
+ "step": 520
531
+ },
532
+ {
533
+ "entropy": 0.5186641301959753,
534
+ "epoch": 0.363262508567512,
535
+ "grad_norm": 0.8043237924575806,
536
+ "learning_rate": 0.00017582819282613662,
537
+ "loss": 0.5592,
538
+ "mean_token_accuracy": 0.8656348437070847,
539
+ "num_tokens": 802330.0,
540
+ "step": 530
541
+ },
542
+ {
543
+ "entropy": 0.6064855309203268,
544
+ "epoch": 0.3701165181631254,
545
+ "grad_norm": 0.43781760334968567,
546
+ "learning_rate": 0.00017537125885309574,
547
+ "loss": 0.5874,
548
+ "mean_token_accuracy": 0.8404153436422348,
549
+ "num_tokens": 819615.0,
550
+ "step": 540
551
+ },
552
+ {
553
+ "entropy": 0.5140635691583156,
554
+ "epoch": 0.37697052775873885,
555
+ "grad_norm": 0.7001516819000244,
556
+ "learning_rate": 0.00017491432488005482,
557
+ "loss": 0.5547,
558
+ "mean_token_accuracy": 0.8677607625722885,
559
+ "num_tokens": 835616.0,
560
+ "step": 550
561
+ },
562
+ {
563
+ "entropy": 0.4637599032372236,
564
+ "epoch": 0.3838245373543523,
565
+ "grad_norm": 0.38044923543930054,
566
+ "learning_rate": 0.00017445739090701394,
567
+ "loss": 0.5021,
568
+ "mean_token_accuracy": 0.87646614164114,
569
+ "num_tokens": 851065.0,
570
+ "step": 560
571
+ },
572
+ {
573
+ "entropy": 0.5091348428279161,
574
+ "epoch": 0.39067854694996573,
575
+ "grad_norm": 0.476380318403244,
576
+ "learning_rate": 0.00017400045693397305,
577
+ "loss": 0.7145,
578
+ "mean_token_accuracy": 0.8637179903686046,
579
+ "num_tokens": 866992.0,
580
+ "step": 570
581
+ },
582
+ {
583
+ "entropy": 0.5213964153081179,
584
+ "epoch": 0.3975325565455792,
585
+ "grad_norm": 0.3205454647541046,
586
+ "learning_rate": 0.00017354352296093214,
587
+ "loss": 0.5395,
588
+ "mean_token_accuracy": 0.8607370749115943,
589
+ "num_tokens": 881803.0,
590
+ "step": 580
591
+ },
592
+ {
593
+ "entropy": 0.619412742741406,
594
+ "epoch": 0.4043865661411926,
595
+ "grad_norm": 0.6068571209907532,
596
+ "learning_rate": 0.00017308658898789126,
597
+ "loss": 0.7504,
598
+ "mean_token_accuracy": 0.8409741953015327,
599
+ "num_tokens": 896283.0,
600
+ "step": 590
601
+ },
602
+ {
603
+ "entropy": 0.41873827911913397,
604
+ "epoch": 0.41124057573680606,
605
+ "grad_norm": 0.7212440371513367,
606
+ "learning_rate": 0.00017262965501485035,
607
+ "loss": 0.4416,
608
+ "mean_token_accuracy": 0.8842875167727471,
609
+ "num_tokens": 912255.0,
610
+ "step": 600
611
+ },
612
+ {
613
+ "entropy": 0.5398109834641218,
614
+ "epoch": 0.41809458533241944,
615
+ "grad_norm": 0.5380451083183289,
616
+ "learning_rate": 0.00017217272104180946,
617
+ "loss": 0.6092,
618
+ "mean_token_accuracy": 0.8535096302628518,
619
+ "num_tokens": 924648.0,
620
+ "step": 610
621
+ },
622
+ {
623
+ "entropy": 0.5522895563393831,
624
+ "epoch": 0.4249485949280329,
625
+ "grad_norm": 0.3073669373989105,
626
+ "learning_rate": 0.00017171578706876858,
627
+ "loss": 0.5943,
628
+ "mean_token_accuracy": 0.8548912346363068,
629
+ "num_tokens": 942485.0,
630
+ "step": 620
631
+ },
632
+ {
633
+ "entropy": 0.6571722824126482,
634
+ "epoch": 0.4318026045236463,
635
+ "grad_norm": 0.32408949732780457,
636
+ "learning_rate": 0.00017125885309572766,
637
+ "loss": 0.6485,
638
+ "mean_token_accuracy": 0.8336619213223457,
639
+ "num_tokens": 959239.0,
640
+ "step": 630
641
+ },
642
+ {
643
+ "entropy": 0.44382771104574203,
644
+ "epoch": 0.43865661411925977,
645
+ "grad_norm": 0.3714044988155365,
646
+ "learning_rate": 0.00017080191912268678,
647
+ "loss": 0.451,
648
+ "mean_token_accuracy": 0.8748382180929184,
649
+ "num_tokens": 971292.0,
650
+ "step": 640
651
+ },
652
+ {
653
+ "entropy": 0.5132732756435872,
654
+ "epoch": 0.4455106237148732,
655
+ "grad_norm": 0.39163199067115784,
656
+ "learning_rate": 0.00017034498514964587,
657
+ "loss": 0.5782,
658
+ "mean_token_accuracy": 0.8603680655360222,
659
+ "num_tokens": 986609.0,
660
+ "step": 650
661
+ },
662
+ {
663
+ "entropy": 0.6249308317899704,
664
+ "epoch": 0.45236463331048665,
665
+ "grad_norm": 0.9571526646614075,
666
+ "learning_rate": 0.00016988805117660498,
667
+ "loss": 0.6102,
668
+ "mean_token_accuracy": 0.8412078201770783,
669
+ "num_tokens": 1001886.0,
670
+ "step": 660
671
+ },
672
+ {
673
+ "entropy": 0.5879610646516085,
674
+ "epoch": 0.4592186429061001,
675
+ "grad_norm": 0.5797366499900818,
676
+ "learning_rate": 0.00016943111720356407,
677
+ "loss": 0.564,
678
+ "mean_token_accuracy": 0.8438061460852623,
679
+ "num_tokens": 1016026.0,
680
+ "step": 670
681
+ },
682
+ {
683
+ "entropy": 0.5628054179251194,
684
+ "epoch": 0.4660726525017135,
685
+ "grad_norm": 1.196199893951416,
686
+ "learning_rate": 0.0001689741832305232,
687
+ "loss": 0.5893,
688
+ "mean_token_accuracy": 0.8494728982448578,
689
+ "num_tokens": 1027357.0,
690
+ "step": 680
691
+ },
692
+ {
693
+ "entropy": 0.47301769629120827,
694
+ "epoch": 0.4729266620973269,
695
+ "grad_norm": 0.41828563809394836,
696
+ "learning_rate": 0.0001685172492574823,
697
+ "loss": 0.5013,
698
+ "mean_token_accuracy": 0.8767685040831565,
699
+ "num_tokens": 1042347.0,
700
+ "step": 690
701
+ },
702
+ {
703
+ "entropy": 0.5087582165375352,
704
+ "epoch": 0.47978067169294036,
705
+ "grad_norm": 0.36651521921157837,
706
+ "learning_rate": 0.00016806031528444142,
707
+ "loss": 0.5749,
708
+ "mean_token_accuracy": 0.8544954568147659,
709
+ "num_tokens": 1061719.0,
710
+ "step": 700
711
+ },
712
+ {
713
+ "entropy": 0.5259541615843772,
714
+ "epoch": 0.4866346812885538,
715
+ "grad_norm": 0.5560138821601868,
716
+ "learning_rate": 0.00016760338131140053,
717
+ "loss": 0.5649,
718
+ "mean_token_accuracy": 0.860032057762146,
719
+ "num_tokens": 1075339.0,
720
+ "step": 710
721
+ },
722
+ {
723
+ "entropy": 0.4655290380120277,
724
+ "epoch": 0.49348869088416725,
725
+ "grad_norm": 0.37081801891326904,
726
+ "learning_rate": 0.00016714644733835962,
727
+ "loss": 0.5218,
728
+ "mean_token_accuracy": 0.8754615411162376,
729
+ "num_tokens": 1089873.0,
730
+ "step": 720
731
+ },
732
+ {
733
+ "entropy": 0.5236123736947775,
734
+ "epoch": 0.5003427004797807,
735
+ "grad_norm": 0.4931930899620056,
736
+ "learning_rate": 0.00016668951336531874,
737
+ "loss": 0.5333,
738
+ "mean_token_accuracy": 0.8595968760550022,
739
+ "num_tokens": 1107924.0,
740
+ "step": 730
741
+ },
742
+ {
743
+ "entropy": 0.5846156869083643,
744
+ "epoch": 0.5071967100753941,
745
+ "grad_norm": 0.47382351756095886,
746
+ "learning_rate": 0.00016623257939227782,
747
+ "loss": 0.6035,
748
+ "mean_token_accuracy": 0.8439710319042206,
749
+ "num_tokens": 1123755.0,
750
+ "step": 740
751
+ },
752
+ {
753
+ "entropy": 0.5500952435657382,
754
+ "epoch": 0.5140507196710076,
755
+ "grad_norm": 0.5050795674324036,
756
+ "learning_rate": 0.00016577564541923694,
757
+ "loss": 0.6073,
758
+ "mean_token_accuracy": 0.8468502178788185,
759
+ "num_tokens": 1138565.0,
760
+ "step": 750
761
+ },
762
+ {
763
+ "entropy": 0.5514631005004048,
764
+ "epoch": 0.520904729266621,
765
+ "grad_norm": 0.5656992793083191,
766
+ "learning_rate": 0.00016531871144619603,
767
+ "loss": 0.5075,
768
+ "mean_token_accuracy": 0.8544194102287292,
769
+ "num_tokens": 1157676.0,
770
+ "step": 760
771
+ },
772
+ {
773
+ "entropy": 0.49982974790036677,
774
+ "epoch": 0.5277587388622345,
775
+ "grad_norm": 0.4955768585205078,
776
+ "learning_rate": 0.00016486177747315514,
777
+ "loss": 0.5041,
778
+ "mean_token_accuracy": 0.8634250342845917,
779
+ "num_tokens": 1174042.0,
780
+ "step": 770
781
+ },
782
+ {
783
+ "entropy": 0.5862449683248997,
784
+ "epoch": 0.5346127484578478,
785
+ "grad_norm": 0.5951958298683167,
786
+ "learning_rate": 0.00016440484350011426,
787
+ "loss": 0.5804,
788
+ "mean_token_accuracy": 0.8448848068714142,
789
+ "num_tokens": 1190184.0,
790
+ "step": 780
791
+ },
792
+ {
793
+ "entropy": 0.4969827888533473,
794
+ "epoch": 0.5414667580534612,
795
+ "grad_norm": 0.4006407856941223,
796
+ "learning_rate": 0.00016394790952707335,
797
+ "loss": 0.5379,
798
+ "mean_token_accuracy": 0.8700526058673859,
799
+ "num_tokens": 1205954.0,
800
+ "step": 790
801
+ },
802
+ {
803
+ "entropy": 0.5849012348800897,
804
+ "epoch": 0.5483207676490747,
805
+ "grad_norm": 0.624742329120636,
806
+ "learning_rate": 0.00016349097555403246,
807
+ "loss": 0.6361,
808
+ "mean_token_accuracy": 0.8400089010596276,
809
+ "num_tokens": 1220942.0,
810
+ "step": 800
811
+ },
812
+ {
813
+ "entropy": 0.5625248458236456,
814
+ "epoch": 0.5551747772446881,
815
+ "grad_norm": 1.40684974193573,
816
+ "learning_rate": 0.00016303404158099155,
817
+ "loss": 0.6314,
818
+ "mean_token_accuracy": 0.8519342541694641,
819
+ "num_tokens": 1236644.0,
820
+ "step": 810
821
+ },
822
+ {
823
+ "entropy": 0.49897886253893375,
824
+ "epoch": 0.5620287868403016,
825
+ "grad_norm": 0.5541409850120544,
826
+ "learning_rate": 0.00016257710760795067,
827
+ "loss": 0.5443,
828
+ "mean_token_accuracy": 0.8650717407464981,
829
+ "num_tokens": 1252654.0,
830
+ "step": 820
831
+ },
832
+ {
833
+ "entropy": 0.4627639502286911,
834
+ "epoch": 0.568882796435915,
835
+ "grad_norm": 0.48005378246307373,
836
+ "learning_rate": 0.00016212017363490975,
837
+ "loss": 0.5117,
838
+ "mean_token_accuracy": 0.8780093342065811,
839
+ "num_tokens": 1267484.0,
840
+ "step": 830
841
+ },
842
+ {
843
+ "entropy": 0.5190326888114214,
844
+ "epoch": 0.5757368060315284,
845
+ "grad_norm": 0.6706176400184631,
846
+ "learning_rate": 0.00016166323966186887,
847
+ "loss": 0.5251,
848
+ "mean_token_accuracy": 0.8629909038543702,
849
+ "num_tokens": 1282022.0,
850
+ "step": 840
851
+ },
852
+ {
853
+ "entropy": 0.5338688423857093,
854
+ "epoch": 0.5825908156271419,
855
+ "grad_norm": 0.5225579738616943,
856
+ "learning_rate": 0.00016120630568882798,
857
+ "loss": 0.5929,
858
+ "mean_token_accuracy": 0.856892392039299,
859
+ "num_tokens": 1296087.0,
860
+ "step": 850
861
+ },
862
+ {
863
+ "entropy": 0.49688454922288655,
864
+ "epoch": 0.5894448252227553,
865
+ "grad_norm": 0.26188451051712036,
866
+ "learning_rate": 0.00016074937171578707,
867
+ "loss": 0.6414,
868
+ "mean_token_accuracy": 0.8633167922496796,
869
+ "num_tokens": 1313509.0,
870
+ "step": 860
871
+ },
872
+ {
873
+ "entropy": 0.5256685543805361,
874
+ "epoch": 0.5962988348183688,
875
+ "grad_norm": 0.6064833998680115,
876
+ "learning_rate": 0.0001602924377427462,
877
+ "loss": 0.4999,
878
+ "mean_token_accuracy": 0.8630939826369286,
879
+ "num_tokens": 1328689.0,
880
+ "step": 870
881
+ },
882
+ {
883
+ "entropy": 0.5231131825596094,
884
+ "epoch": 0.6031528444139822,
885
+ "grad_norm": 0.4005596339702606,
886
+ "learning_rate": 0.00015983550376970528,
887
+ "loss": 0.5431,
888
+ "mean_token_accuracy": 0.8552977308630944,
889
+ "num_tokens": 1345534.0,
890
+ "step": 880
891
+ },
892
+ {
893
+ "entropy": 0.5158163897693158,
894
+ "epoch": 0.6100068540095956,
895
+ "grad_norm": 0.8037022948265076,
896
+ "learning_rate": 0.0001593785697966644,
897
+ "loss": 0.6514,
898
+ "mean_token_accuracy": 0.8581083044409752,
899
+ "num_tokens": 1361497.0,
900
+ "step": 890
901
+ },
902
+ {
903
+ "entropy": 0.4985586106777191,
904
+ "epoch": 0.6168608636052091,
905
+ "grad_norm": 0.38318124413490295,
906
+ "learning_rate": 0.0001589216358236235,
907
+ "loss": 0.5226,
908
+ "mean_token_accuracy": 0.8698930114507675,
909
+ "num_tokens": 1376582.0,
910
+ "step": 900
911
+ },
912
+ {
913
+ "entropy": 0.505715012550354,
914
+ "epoch": 0.6237148732008225,
915
+ "grad_norm": 0.39991825819015503,
916
+ "learning_rate": 0.0001584647018505826,
917
+ "loss": 0.5799,
918
+ "mean_token_accuracy": 0.8601746618747711,
919
+ "num_tokens": 1393099.0,
920
+ "step": 910
921
+ },
922
+ {
923
+ "entropy": 0.5512417580932378,
924
+ "epoch": 0.630568882796436,
925
+ "grad_norm": 0.3564458191394806,
926
+ "learning_rate": 0.0001580077678775417,
927
+ "loss": 0.6042,
928
+ "mean_token_accuracy": 0.8542352899909019,
929
+ "num_tokens": 1405413.0,
930
+ "step": 920
931
+ },
932
+ {
933
+ "entropy": 0.6023517435416579,
934
+ "epoch": 0.6374228923920493,
935
+ "grad_norm": 0.5077884197235107,
936
+ "learning_rate": 0.0001575508339045008,
937
+ "loss": 0.5491,
938
+ "mean_token_accuracy": 0.8345923721790314,
939
+ "num_tokens": 1420630.0,
940
+ "step": 930
941
+ },
942
+ {
943
+ "entropy": 0.45138914659619334,
944
+ "epoch": 0.6442769019876627,
945
+ "grad_norm": 0.526972234249115,
946
+ "learning_rate": 0.00015709389993145991,
947
+ "loss": 0.4937,
948
+ "mean_token_accuracy": 0.8770761311054229,
949
+ "num_tokens": 1434843.0,
950
+ "step": 940
951
+ },
952
+ {
953
+ "entropy": 0.5025592448189855,
954
+ "epoch": 0.6511309115832762,
955
+ "grad_norm": 0.33170071244239807,
956
+ "learning_rate": 0.000156636965958419,
957
+ "loss": 0.6154,
958
+ "mean_token_accuracy": 0.8634001970291137,
959
+ "num_tokens": 1451288.0,
960
+ "step": 950
961
+ },
962
+ {
963
+ "entropy": 0.4892792083323002,
964
+ "epoch": 0.6579849211788896,
965
+ "grad_norm": 0.5489900708198547,
966
+ "learning_rate": 0.00015618003198537812,
967
+ "loss": 0.4766,
968
+ "mean_token_accuracy": 0.8682720705866813,
969
+ "num_tokens": 1461993.0,
970
+ "step": 960
971
+ },
972
+ {
973
+ "entropy": 0.45295149497687814,
974
+ "epoch": 0.6648389307745031,
975
+ "grad_norm": 0.4360350966453552,
976
+ "learning_rate": 0.00015572309801233723,
977
+ "loss": 0.4526,
978
+ "mean_token_accuracy": 0.8701859056949616,
979
+ "num_tokens": 1476768.0,
980
+ "step": 970
981
+ },
982
+ {
983
+ "entropy": 0.5168599784374237,
984
+ "epoch": 0.6716929403701165,
985
+ "grad_norm": 0.6106163263320923,
986
+ "learning_rate": 0.00015526616403929632,
987
+ "loss": 0.5304,
988
+ "mean_token_accuracy": 0.8633713632822037,
989
+ "num_tokens": 1490815.0,
990
+ "step": 980
991
+ },
992
+ {
993
+ "entropy": 0.5374733801931143,
994
+ "epoch": 0.67854694996573,
995
+ "grad_norm": 0.6627058982849121,
996
+ "learning_rate": 0.00015480923006625544,
997
+ "loss": 0.6159,
998
+ "mean_token_accuracy": 0.8490797847509384,
999
+ "num_tokens": 1509112.0,
1000
+ "step": 990
1001
+ },
1002
+ {
1003
+ "entropy": 0.4429541861638427,
1004
+ "epoch": 0.6854009595613434,
1005
+ "grad_norm": 0.4334024488925934,
1006
+ "learning_rate": 0.00015435229609321452,
1007
+ "loss": 0.4791,
1008
+ "mean_token_accuracy": 0.8743316605687141,
1009
+ "num_tokens": 1525280.0,
1010
+ "step": 1000
1011
+ },
1012
+ {
1013
+ "entropy": 0.5753512477502227,
1014
+ "epoch": 0.6922549691569568,
1015
+ "grad_norm": 0.4165889322757721,
1016
+ "learning_rate": 0.00015389536212017364,
1017
+ "loss": 0.6037,
1018
+ "mean_token_accuracy": 0.8437389314174653,
1019
+ "num_tokens": 1541391.0,
1020
+ "step": 1010
1021
+ },
1022
+ {
1023
+ "entropy": 0.4632994903251529,
1024
+ "epoch": 0.6991089787525703,
1025
+ "grad_norm": 0.562599241733551,
1026
+ "learning_rate": 0.00015343842814713273,
1027
+ "loss": 0.4878,
1028
+ "mean_token_accuracy": 0.8699111506342888,
1029
+ "num_tokens": 1558296.0,
1030
+ "step": 1020
1031
+ },
1032
+ {
1033
+ "entropy": 0.5592806939035654,
1034
+ "epoch": 0.7059629883481837,
1035
+ "grad_norm": 0.5945786833763123,
1036
+ "learning_rate": 0.00015298149417409184,
1037
+ "loss": 0.5674,
1038
+ "mean_token_accuracy": 0.8522913366556167,
1039
+ "num_tokens": 1572653.0,
1040
+ "step": 1030
1041
+ },
1042
+ {
1043
+ "entropy": 0.4662055611610413,
1044
+ "epoch": 0.7128169979437972,
1045
+ "grad_norm": 0.5158401131629944,
1046
+ "learning_rate": 0.00015252456020105096,
1047
+ "loss": 0.5197,
1048
+ "mean_token_accuracy": 0.8687326833605766,
1049
+ "num_tokens": 1586887.0,
1050
+ "step": 1040
1051
+ },
1052
+ {
1053
+ "entropy": 0.5457549329847098,
1054
+ "epoch": 0.7196710075394106,
1055
+ "grad_norm": 0.5199631452560425,
1056
+ "learning_rate": 0.00015206762622801005,
1057
+ "loss": 0.5676,
1058
+ "mean_token_accuracy": 0.8544633775949478,
1059
+ "num_tokens": 1602235.0,
1060
+ "step": 1050
1061
+ },
1062
+ {
1063
+ "entropy": 0.5050226721912623,
1064
+ "epoch": 0.726525017135024,
1065
+ "grad_norm": 0.4335126578807831,
1066
+ "learning_rate": 0.00015161069225496916,
1067
+ "loss": 0.5754,
1068
+ "mean_token_accuracy": 0.859102988243103,
1069
+ "num_tokens": 1613841.0,
1070
+ "step": 1060
1071
+ },
1072
+ {
1073
+ "entropy": 0.532437426224351,
1074
+ "epoch": 0.7333790267306374,
1075
+ "grad_norm": 1.1267528533935547,
1076
+ "learning_rate": 0.00015115375828192825,
1077
+ "loss": 0.5769,
1078
+ "mean_token_accuracy": 0.8577256396412849,
1079
+ "num_tokens": 1630682.0,
1080
+ "step": 1070
1081
+ },
1082
+ {
1083
+ "entropy": 0.44471236430108546,
1084
+ "epoch": 0.7402330363262508,
1085
+ "grad_norm": 0.38670477271080017,
1086
+ "learning_rate": 0.00015069682430888737,
1087
+ "loss": 0.5022,
1088
+ "mean_token_accuracy": 0.8728992164134979,
1089
+ "num_tokens": 1644143.0,
1090
+ "step": 1080
1091
+ },
1092
+ {
1093
+ "entropy": 0.5494170293211937,
1094
+ "epoch": 0.7470870459218643,
1095
+ "grad_norm": 0.5468182563781738,
1096
+ "learning_rate": 0.00015023989033584648,
1097
+ "loss": 0.5275,
1098
+ "mean_token_accuracy": 0.8561429738998413,
1099
+ "num_tokens": 1655963.0,
1100
+ "step": 1090
1101
+ },
1102
+ {
1103
+ "entropy": 0.45474576093256475,
1104
+ "epoch": 0.7539410555174777,
1105
+ "grad_norm": 0.41850578784942627,
1106
+ "learning_rate": 0.00014978295636280557,
1107
+ "loss": 0.4832,
1108
+ "mean_token_accuracy": 0.8719681158661843,
1109
+ "num_tokens": 1671647.0,
1110
+ "step": 1100
1111
+ },
1112
+ {
1113
+ "entropy": 0.5208310384303332,
1114
+ "epoch": 0.7607950651130911,
1115
+ "grad_norm": 0.4063032865524292,
1116
+ "learning_rate": 0.00014932602238976468,
1117
+ "loss": 0.4723,
1118
+ "mean_token_accuracy": 0.8688164860010147,
1119
+ "num_tokens": 1686566.0,
1120
+ "step": 1110
1121
+ },
1122
+ {
1123
+ "entropy": 0.48968234546482564,
1124
+ "epoch": 0.7676490747087046,
1125
+ "grad_norm": 0.4851994216442108,
1126
+ "learning_rate": 0.0001488690884167238,
1127
+ "loss": 0.5295,
1128
+ "mean_token_accuracy": 0.8702765092253685,
1129
+ "num_tokens": 1701964.0,
1130
+ "step": 1120
1131
+ },
1132
+ {
1133
+ "entropy": 0.4356084756553173,
1134
+ "epoch": 0.774503084304318,
1135
+ "grad_norm": 0.3857946991920471,
1136
+ "learning_rate": 0.00014841215444368291,
1137
+ "loss": 0.4956,
1138
+ "mean_token_accuracy": 0.8722770050168037,
1139
+ "num_tokens": 1717179.0,
1140
+ "step": 1130
1141
+ },
1142
+ {
1143
+ "entropy": 0.4641384145244956,
1144
+ "epoch": 0.7813570938999315,
1145
+ "grad_norm": 0.6515609622001648,
1146
+ "learning_rate": 0.000147955220470642,
1147
+ "loss": 0.5409,
1148
+ "mean_token_accuracy": 0.8693532347679138,
1149
+ "num_tokens": 1731173.0,
1150
+ "step": 1140
1151
+ },
1152
+ {
1153
+ "entropy": 0.5151202550157905,
1154
+ "epoch": 0.7882111034955449,
1155
+ "grad_norm": 0.397576242685318,
1156
+ "learning_rate": 0.00014749828649760112,
1157
+ "loss": 0.5038,
1158
+ "mean_token_accuracy": 0.8632552906870842,
1159
+ "num_tokens": 1747319.0,
1160
+ "step": 1150
1161
+ },
1162
+ {
1163
+ "entropy": 0.5475881166756154,
1164
+ "epoch": 0.7950651130911583,
1165
+ "grad_norm": 0.6286647319793701,
1166
+ "learning_rate": 0.0001470413525245602,
1167
+ "loss": 0.5117,
1168
+ "mean_token_accuracy": 0.8562549948692322,
1169
+ "num_tokens": 1761875.0,
1170
+ "step": 1160
1171
+ },
1172
+ {
1173
+ "entropy": 0.529462856054306,
1174
+ "epoch": 0.8019191226867718,
1175
+ "grad_norm": 0.35311031341552734,
1176
+ "learning_rate": 0.00014658441855151932,
1177
+ "loss": 0.5344,
1178
+ "mean_token_accuracy": 0.8580666840076446,
1179
+ "num_tokens": 1775404.0,
1180
+ "step": 1170
1181
+ },
1182
+ {
1183
+ "entropy": 0.5058778524398804,
1184
+ "epoch": 0.8087731322823852,
1185
+ "grad_norm": 0.4609556496143341,
1186
+ "learning_rate": 0.00014612748457847844,
1187
+ "loss": 0.5985,
1188
+ "mean_token_accuracy": 0.8641025006771088,
1189
+ "num_tokens": 1792569.0,
1190
+ "step": 1180
1191
+ },
1192
+ {
1193
+ "entropy": 0.48940622098743913,
1194
+ "epoch": 0.8156271418779987,
1195
+ "grad_norm": 0.4840541481971741,
1196
+ "learning_rate": 0.00014567055060543752,
1197
+ "loss": 0.5918,
1198
+ "mean_token_accuracy": 0.8665370926260948,
1199
+ "num_tokens": 1809055.0,
1200
+ "step": 1190
1201
+ },
1202
+ {
1203
+ "entropy": 0.48019982874393463,
1204
+ "epoch": 0.8224811514736121,
1205
+ "grad_norm": 0.45010054111480713,
1206
+ "learning_rate": 0.00014521361663239664,
1207
+ "loss": 0.5367,
1208
+ "mean_token_accuracy": 0.8690081983804703,
1209
+ "num_tokens": 1822135.0,
1210
+ "step": 1200
1211
+ },
1212
+ {
1213
+ "entropy": 0.40929838865995405,
1214
+ "epoch": 0.8293351610692254,
1215
+ "grad_norm": 0.5522090196609497,
1216
+ "learning_rate": 0.00014475668265935573,
1217
+ "loss": 0.393,
1218
+ "mean_token_accuracy": 0.887654384970665,
1219
+ "num_tokens": 1838028.0,
1220
+ "step": 1210
1221
+ },
1222
+ {
1223
+ "entropy": 0.5324885908514261,
1224
+ "epoch": 0.8361891706648389,
1225
+ "grad_norm": 0.34172698855400085,
1226
+ "learning_rate": 0.00014429974868631484,
1227
+ "loss": 0.5601,
1228
+ "mean_token_accuracy": 0.8547317892313003,
1229
+ "num_tokens": 1852880.0,
1230
+ "step": 1220
1231
+ },
1232
+ {
1233
+ "entropy": 0.4797104798257351,
1234
+ "epoch": 0.8430431802604523,
1235
+ "grad_norm": 0.4826546311378479,
1236
+ "learning_rate": 0.00014384281471327393,
1237
+ "loss": 0.6045,
1238
+ "mean_token_accuracy": 0.8638340055942535,
1239
+ "num_tokens": 1863729.0,
1240
+ "step": 1230
1241
+ },
1242
+ {
1243
+ "entropy": 0.6502325102686882,
1244
+ "epoch": 0.8498971898560658,
1245
+ "grad_norm": 0.5058287382125854,
1246
+ "learning_rate": 0.00014338588074023305,
1247
+ "loss": 0.6526,
1248
+ "mean_token_accuracy": 0.8361533902585506,
1249
+ "num_tokens": 1880647.0,
1250
+ "step": 1240
1251
+ },
1252
+ {
1253
+ "entropy": 0.5473382823169232,
1254
+ "epoch": 0.8567511994516792,
1255
+ "grad_norm": 0.4426461458206177,
1256
+ "learning_rate": 0.00014292894676719216,
1257
+ "loss": 0.5567,
1258
+ "mean_token_accuracy": 0.8567781046032905,
1259
+ "num_tokens": 1897892.0,
1260
+ "step": 1250
1261
+ },
1262
+ {
1263
+ "entropy": 0.4634023506194353,
1264
+ "epoch": 0.8636052090472927,
1265
+ "grad_norm": 0.36186039447784424,
1266
+ "learning_rate": 0.00014247201279415125,
1267
+ "loss": 0.4819,
1268
+ "mean_token_accuracy": 0.8789055705070495,
1269
+ "num_tokens": 1914142.0,
1270
+ "step": 1260
1271
+ },
1272
+ {
1273
+ "entropy": 0.4072172209620476,
1274
+ "epoch": 0.8704592186429061,
1275
+ "grad_norm": 1.0110243558883667,
1276
+ "learning_rate": 0.00014201507882111037,
1277
+ "loss": 0.4309,
1278
+ "mean_token_accuracy": 0.8848265528678894,
1279
+ "num_tokens": 1928985.0,
1280
+ "step": 1270
1281
+ },
1282
+ {
1283
+ "entropy": 0.473388434574008,
1284
+ "epoch": 0.8773132282385195,
1285
+ "grad_norm": 0.4536840319633484,
1286
+ "learning_rate": 0.00014155814484806945,
1287
+ "loss": 0.5185,
1288
+ "mean_token_accuracy": 0.8669295862317086,
1289
+ "num_tokens": 1946333.0,
1290
+ "step": 1280
1291
+ },
1292
+ {
1293
+ "entropy": 0.4370680347084999,
1294
+ "epoch": 0.884167237834133,
1295
+ "grad_norm": 0.47696638107299805,
1296
+ "learning_rate": 0.00014110121087502857,
1297
+ "loss": 0.4653,
1298
+ "mean_token_accuracy": 0.8775255620479584,
1299
+ "num_tokens": 1960422.0,
1300
+ "step": 1290
1301
+ },
1302
+ {
1303
+ "entropy": 0.43862779829651116,
1304
+ "epoch": 0.8910212474297464,
1305
+ "grad_norm": 0.5211741924285889,
1306
+ "learning_rate": 0.00014064427690198766,
1307
+ "loss": 0.4933,
1308
+ "mean_token_accuracy": 0.8786178231239319,
1309
+ "num_tokens": 1975560.0,
1310
+ "step": 1300
1311
+ },
1312
+ {
1313
+ "entropy": 0.5589355498552322,
1314
+ "epoch": 0.8978752570253599,
1315
+ "grad_norm": 0.4128772020339966,
1316
+ "learning_rate": 0.00014018734292894677,
1317
+ "loss": 0.582,
1318
+ "mean_token_accuracy": 0.851758947968483,
1319
+ "num_tokens": 1989833.0,
1320
+ "step": 1310
1321
+ },
1322
+ {
1323
+ "entropy": 0.49184365533292296,
1324
+ "epoch": 0.9047292666209733,
1325
+ "grad_norm": 0.41796982288360596,
1326
+ "learning_rate": 0.0001397304089559059,
1327
+ "loss": 0.5851,
1328
+ "mean_token_accuracy": 0.8666749432682991,
1329
+ "num_tokens": 2007135.0,
1330
+ "step": 1320
1331
+ },
1332
+ {
1333
+ "entropy": 0.5475243296474218,
1334
+ "epoch": 0.9115832762165867,
1335
+ "grad_norm": 0.34859004616737366,
1336
+ "learning_rate": 0.00013927347498286498,
1337
+ "loss": 0.6538,
1338
+ "mean_token_accuracy": 0.8524001136422157,
1339
+ "num_tokens": 2024798.0,
1340
+ "step": 1330
1341
+ },
1342
+ {
1343
+ "entropy": 0.5540970169007778,
1344
+ "epoch": 0.9184372858122002,
1345
+ "grad_norm": 0.7016645669937134,
1346
+ "learning_rate": 0.0001388165410098241,
1347
+ "loss": 0.5823,
1348
+ "mean_token_accuracy": 0.8562126755714417,
1349
+ "num_tokens": 2039195.0,
1350
+ "step": 1340
1351
+ },
1352
+ {
1353
+ "entropy": 0.5045036463066935,
1354
+ "epoch": 0.9252912954078135,
1355
+ "grad_norm": 0.452700674533844,
1356
+ "learning_rate": 0.00013835960703678318,
1357
+ "loss": 0.5448,
1358
+ "mean_token_accuracy": 0.8633385166525841,
1359
+ "num_tokens": 2051288.0,
1360
+ "step": 1350
1361
+ },
1362
+ {
1363
+ "entropy": 0.4977139551192522,
1364
+ "epoch": 0.932145305003427,
1365
+ "grad_norm": 0.5281541347503662,
1366
+ "learning_rate": 0.0001379026730637423,
1367
+ "loss": 0.5267,
1368
+ "mean_token_accuracy": 0.8511179909110069,
1369
+ "num_tokens": 2066556.0,
1370
+ "step": 1360
1371
+ },
1372
+ {
1373
+ "entropy": 0.44772500842809676,
1374
+ "epoch": 0.9389993145990404,
1375
+ "grad_norm": 0.3925575017929077,
1376
+ "learning_rate": 0.0001374457390907014,
1377
+ "loss": 0.4809,
1378
+ "mean_token_accuracy": 0.8780866637825966,
1379
+ "num_tokens": 2081977.0,
1380
+ "step": 1370
1381
+ },
1382
+ {
1383
+ "entropy": 0.4240812066942453,
1384
+ "epoch": 0.9458533241946538,
1385
+ "grad_norm": 0.38476476073265076,
1386
+ "learning_rate": 0.0001369888051176605,
1387
+ "loss": 0.4692,
1388
+ "mean_token_accuracy": 0.8760198578238487,
1389
+ "num_tokens": 2096240.0,
1390
+ "step": 1380
1391
+ },
1392
+ {
1393
+ "entropy": 0.45738366320729257,
1394
+ "epoch": 0.9527073337902673,
1395
+ "grad_norm": 0.3925527036190033,
1396
+ "learning_rate": 0.00013653187114461961,
1397
+ "loss": 0.4463,
1398
+ "mean_token_accuracy": 0.8781074970960617,
1399
+ "num_tokens": 2112542.0,
1400
+ "step": 1390
1401
+ },
1402
+ {
1403
+ "entropy": 0.6118490558117629,
1404
+ "epoch": 0.9595613433858807,
1405
+ "grad_norm": 0.5079460144042969,
1406
+ "learning_rate": 0.0001360749371715787,
1407
+ "loss": 0.5996,
1408
+ "mean_token_accuracy": 0.8484726428985596,
1409
+ "num_tokens": 2128158.0,
1410
+ "step": 1400
1411
+ },
1412
+ {
1413
+ "entropy": 0.5192625004798174,
1414
+ "epoch": 0.9664153529814942,
1415
+ "grad_norm": 0.5811266899108887,
1416
+ "learning_rate": 0.00013561800319853782,
1417
+ "loss": 0.4973,
1418
+ "mean_token_accuracy": 0.8583417847752571,
1419
+ "num_tokens": 2144185.0,
1420
+ "step": 1410
1421
+ },
1422
+ {
1423
+ "entropy": 0.424515537545085,
1424
+ "epoch": 0.9732693625771076,
1425
+ "grad_norm": 0.530555784702301,
1426
+ "learning_rate": 0.0001351610692254969,
1427
+ "loss": 0.4075,
1428
+ "mean_token_accuracy": 0.8812750861048698,
1429
+ "num_tokens": 2156802.0,
1430
+ "step": 1420
1431
+ },
1432
+ {
1433
+ "entropy": 0.43874580282717945,
1434
+ "epoch": 0.980123372172721,
1435
+ "grad_norm": 0.37783336639404297,
1436
+ "learning_rate": 0.00013470413525245602,
1437
+ "loss": 0.4982,
1438
+ "mean_token_accuracy": 0.8769993513822556,
1439
+ "num_tokens": 2173093.0,
1440
+ "step": 1430
1441
+ },
1442
+ {
1443
+ "entropy": 0.5104522176086903,
1444
+ "epoch": 0.9869773817683345,
1445
+ "grad_norm": 0.3972949981689453,
1446
+ "learning_rate": 0.00013424720127941514,
1447
+ "loss": 0.5447,
1448
+ "mean_token_accuracy": 0.866170509159565,
1449
+ "num_tokens": 2186974.0,
1450
+ "step": 1440
1451
+ },
1452
+ {
1453
+ "entropy": 0.412432143650949,
1454
+ "epoch": 0.9938313913639479,
1455
+ "grad_norm": 0.4336175322532654,
1456
+ "learning_rate": 0.00013379026730637422,
1457
+ "loss": 0.4758,
1458
+ "mean_token_accuracy": 0.8839898869395256,
1459
+ "num_tokens": 2205666.0,
1460
+ "step": 1450
1461
+ },
1462
+ {
1463
+ "entropy": 0.43371021617203953,
1464
+ "epoch": 1.0006854009595614,
1465
+ "grad_norm": 0.35590001940727234,
1466
+ "learning_rate": 0.00013333333333333334,
1467
+ "loss": 0.4562,
1468
+ "mean_token_accuracy": 0.8767066270112991,
1469
+ "num_tokens": 2219486.0,
1470
+ "step": 1460
1471
+ },
1472
+ {
1473
+ "entropy": 0.5512058276683092,
1474
+ "epoch": 1.0075394105551747,
1475
+ "grad_norm": 0.5244994163513184,
1476
+ "learning_rate": 0.00013287639936029243,
1477
+ "loss": 0.5225,
1478
+ "mean_token_accuracy": 0.8718675941228866,
1479
+ "num_tokens": 2236772.0,
1480
+ "step": 1470
1481
+ },
1482
+ {
1483
+ "entropy": 0.4393087295815349,
1484
+ "epoch": 1.0143934201507883,
1485
+ "grad_norm": 0.4118908941745758,
1486
+ "learning_rate": 0.00013241946538725154,
1487
+ "loss": 0.4569,
1488
+ "mean_token_accuracy": 0.8839558228850365,
1489
+ "num_tokens": 2251853.0,
1490
+ "step": 1480
1491
+ },
1492
+ {
1493
+ "entropy": 0.41823681965470316,
1494
+ "epoch": 1.0212474297464016,
1495
+ "grad_norm": 0.3691245913505554,
1496
+ "learning_rate": 0.00013196253141421063,
1497
+ "loss": 0.394,
1498
+ "mean_token_accuracy": 0.882546167075634,
1499
+ "num_tokens": 2267899.0,
1500
+ "step": 1490
1501
+ },
1502
+ {
1503
+ "entropy": 0.4980747589841485,
1504
+ "epoch": 1.0281014393420151,
1505
+ "grad_norm": 0.37798306345939636,
1506
+ "learning_rate": 0.00013150559744116975,
1507
+ "loss": 0.4356,
1508
+ "mean_token_accuracy": 0.8722493484616279,
1509
+ "num_tokens": 2283255.0,
1510
+ "step": 1500
1511
+ }
1512
+ ],
1513
+ "logging_steps": 10,
1514
+ "max_steps": 4377,
1515
+ "num_input_tokens_seen": 0,
1516
+ "num_train_epochs": 3,
1517
+ "save_steps": 500,
1518
+ "stateful_callbacks": {
1519
+ "TrainerControl": {
1520
+ "args": {
1521
+ "should_epoch_stop": false,
1522
+ "should_evaluate": false,
1523
+ "should_log": false,
1524
+ "should_save": true,
1525
+ "should_training_stop": false
1526
+ },
1527
+ "attributes": {}
1528
+ }
1529
+ },
1530
+ "total_flos": 1.820400911267328e+16,
1531
+ "train_batch_size": 1,
1532
+ "trial_name": null,
1533
+ "trial_params": null
1534
+ }
checkpoint-1500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e35abf182dc324387421804686ff27bf5fc036bcc19d753744e040da3f1f0f0
3
+ size 5521
checkpoint-1500/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2000/README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:Qwen/Qwen2.5-Coder-1.5B-Instruct
7
+ - lora
8
+ - sft
9
+ - transformers
10
+ - trl
11
+ ---
12
+
13
+ # Model Card for Model ID
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ <!-- Provide a longer summary of what this model is. -->
24
+
25
+
26
+
27
+ - **Developed by:** [More Information Needed]
28
+ - **Funded by [optional]:** [More Information Needed]
29
+ - **Shared by [optional]:** [More Information Needed]
30
+ - **Model type:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** [More Information Needed]
33
+ - **Finetuned from model [optional]:** [More Information Needed]
34
+
35
+ ### Model Sources [optional]
36
+
37
+ <!-- Provide the basic links for the model. -->
38
+
39
+ - **Repository:** [More Information Needed]
40
+ - **Paper [optional]:** [More Information Needed]
41
+ - **Demo [optional]:** [More Information Needed]
42
+
43
+ ## Uses
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+ ### Direct Use
48
+
49
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## How to Get Started with the Model
78
+
79
+ Use the code below to get started with the model.
80
+
81
+ [More Information Needed]
82
+
83
+ ## Training Details
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Dataset Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ [More Information Needed]
133
+
134
+ ### Results
135
+
136
+ [More Information Needed]
137
+
138
+ #### Summary
139
+
140
+
141
+
142
+ ## Model Examination [optional]
143
+
144
+ <!-- Relevant interpretability work for the model goes here -->
145
+
146
+ [More Information Needed]
147
+
148
+ ## Environmental Impact
149
+
150
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
+
152
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
+
154
+ - **Hardware Type:** [More Information Needed]
155
+ - **Hours used:** [More Information Needed]
156
+ - **Cloud Provider:** [More Information Needed]
157
+ - **Compute Region:** [More Information Needed]
158
+ - **Carbon Emitted:** [More Information Needed]
159
+
160
+ ## Technical Specifications [optional]
161
+
162
+ ### Model Architecture and Objective
163
+
164
+ [More Information Needed]
165
+
166
+ ### Compute Infrastructure
167
+
168
+ [More Information Needed]
169
+
170
+ #### Hardware
171
+
172
+ [More Information Needed]
173
+
174
+ #### Software
175
+
176
+ [More Information Needed]
177
+
178
+ ## Citation [optional]
179
+
180
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
+
182
+ **BibTeX:**
183
+
184
+ [More Information Needed]
185
+
186
+ **APA:**
187
+
188
+ [More Information Needed]
189
+
190
+ ## Glossary [optional]
191
+
192
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
+
194
+ [More Information Needed]
195
+
196
+ ## More Information [optional]
197
+
198
+ [More Information Needed]
199
+
200
+ ## Model Card Authors [optional]
201
+
202
+ [More Information Needed]
203
+
204
+ ## Model Card Contact
205
+
206
+ [More Information Needed]
207
+ ### Framework versions
208
+
209
+ - PEFT 0.17.1
checkpoint-2000/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-Coder-1.5B-Instruct",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "v_proj",
29
+ "gate_proj",
30
+ "up_proj",
31
+ "o_proj",
32
+ "down_proj",
33
+ "k_proj",
34
+ "q_proj"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-2000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dec9f3df0853f8c1504cff1ed09242b3da6258361efb1dd2049966bffbb03c2
3
+ size 73911112
checkpoint-2000/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-2000/chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
checkpoint-2000/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:150fa67dac02533883f6c68a0b10750cdef78a80bb4bcfe53ecd51256567d0d7
3
+ size 148053627
checkpoint-2000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf290ec80421825540590a996aa59cd1c25c81e68cfdf02924b7812f9978fe4d
3
+ size 14645
checkpoint-2000/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4aa03f6e0cd07cf67ce1fbe3101d545f5771ef9148b9debf02b11cf6948da5c
3
+ size 1383
checkpoint-2000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13b37ee2c979d81fb17aec5cf0d91dff463f2638117d0912fbd50fffe0a3ba54
3
+ size 1465
checkpoint-2000/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-2000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896