Upload meta_init_context.py with huggingface_hub
Browse files- meta_init_context.py +94 -0
meta_init_context.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from contextlib import contextmanager
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
|
| 5 |
+
@contextmanager
|
| 6 |
+
def init_empty_weights(include_buffers: bool=False):
|
| 7 |
+
"""Meta initialization context manager.
|
| 8 |
+
|
| 9 |
+
A context manager under which models are initialized with all parameters
|
| 10 |
+
on the meta device, therefore creating an empty model. Useful when just
|
| 11 |
+
initializing the model would blow the available RAM.
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
include_buffers (`bool`, *optional*, defaults to `False`): Whether or
|
| 15 |
+
not to also put all buffers on the meta device while initializing.
|
| 16 |
+
|
| 17 |
+
Example:
|
| 18 |
+
```python
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
|
| 21 |
+
# Initialize a model with 100 billions parameters in no time and without using any RAM.
|
| 22 |
+
with init_empty_weights():
|
| 23 |
+
tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
<Tip warning={true}>
|
| 27 |
+
|
| 28 |
+
Any model created under this context manager has no weights. As such you can't do something like
|
| 29 |
+
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
|
| 30 |
+
|
| 31 |
+
</Tip>
|
| 32 |
+
"""
|
| 33 |
+
with init_on_device(torch.device('meta'), include_buffers=include_buffers) as f:
|
| 34 |
+
yield f
|
| 35 |
+
|
| 36 |
+
@contextmanager
|
| 37 |
+
def init_on_device(device: torch.device, include_buffers: bool=False):
|
| 38 |
+
"""Device initialization context manager.
|
| 39 |
+
|
| 40 |
+
A context manager under which models are initialized with all parameters
|
| 41 |
+
on the specified device.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
device (`torch.device`): Device to initialize all parameters on.
|
| 45 |
+
include_buffers (`bool`, *optional*, defaults to `False`): Whether or
|
| 46 |
+
not to also put all buffers on the meta device while initializing.
|
| 47 |
+
|
| 48 |
+
Example:
|
| 49 |
+
```python
|
| 50 |
+
import torch.nn as nn
|
| 51 |
+
|
| 52 |
+
with init_on_device(device=torch.device("cuda")):
|
| 53 |
+
tst = nn.Liner(100, 100) # on `cuda` device
|
| 54 |
+
```
|
| 55 |
+
"""
|
| 56 |
+
old_register_parameter = nn.Module.register_parameter
|
| 57 |
+
if include_buffers:
|
| 58 |
+
old_register_buffer = nn.Module.register_buffer
|
| 59 |
+
|
| 60 |
+
def register_empty_parameter(module, name, param):
|
| 61 |
+
old_register_parameter(module, name, param)
|
| 62 |
+
if param is not None:
|
| 63 |
+
param_cls = type(module._parameters[name])
|
| 64 |
+
kwargs = module._parameters[name].__dict__
|
| 65 |
+
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
|
| 66 |
+
|
| 67 |
+
def register_empty_buffer(module, name, buffer):
|
| 68 |
+
old_register_buffer(module, name, buffer)
|
| 69 |
+
if buffer is not None:
|
| 70 |
+
module._buffers[name] = module._buffers[name].to(device)
|
| 71 |
+
if include_buffers:
|
| 72 |
+
tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
|
| 73 |
+
else:
|
| 74 |
+
tensor_constructors_to_patch = {}
|
| 75 |
+
|
| 76 |
+
def patch_tensor_constructor(fn):
|
| 77 |
+
|
| 78 |
+
def wrapper(*args, **kwargs):
|
| 79 |
+
kwargs['device'] = device
|
| 80 |
+
return fn(*args, **kwargs)
|
| 81 |
+
return wrapper
|
| 82 |
+
try:
|
| 83 |
+
nn.Module.register_parameter = register_empty_parameter
|
| 84 |
+
if include_buffers:
|
| 85 |
+
nn.Module.register_buffer = register_empty_buffer
|
| 86 |
+
for torch_function_name in tensor_constructors_to_patch.keys():
|
| 87 |
+
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
|
| 88 |
+
yield
|
| 89 |
+
finally:
|
| 90 |
+
nn.Module.register_parameter = old_register_parameter
|
| 91 |
+
if include_buffers:
|
| 92 |
+
nn.Module.register_buffer = old_register_buffer
|
| 93 |
+
for (torch_function_name, old_torch_function) in tensor_constructors_to_patch.items():
|
| 94 |
+
setattr(torch, torch_function_name, old_torch_function)
|