Upload attention.py with huggingface_hub
Browse files- attention.py +276 -0
    	
        attention.py
    ADDED
    
    | @@ -0,0 +1,276 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Attention layers."""
         | 
| 2 | 
            +
            import math
         | 
| 3 | 
            +
            import warnings
         | 
| 4 | 
            +
            from typing import Optional
         | 
| 5 | 
            +
            import torch
         | 
| 6 | 
            +
            import torch.nn as nn
         | 
| 7 | 
            +
            from einops import rearrange
         | 
| 8 | 
            +
            from torch import nn
         | 
| 9 | 
            +
            from .norm import LPLayerNorm
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool):
         | 
| 12 | 
            +
                if original_is_causal and num_query_tokens != num_key_tokens:
         | 
| 13 | 
            +
                    if num_query_tokens != 1:
         | 
| 14 | 
            +
                        raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
         | 
| 15 | 
            +
                    else:
         | 
| 16 | 
            +
                        return False
         | 
| 17 | 
            +
                return original_is_causal
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            def scaled_multihead_dot_product_attention(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
         | 
| 20 | 
            +
                q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
         | 
| 21 | 
            +
                k = rearrange(key, 'b s (h d) -> b h d s', h=1 if multiquery else n_heads)
         | 
| 22 | 
            +
                v = rearrange(value, 'b s (h d) -> b h s d', h=1 if multiquery else n_heads)
         | 
| 23 | 
            +
                min_val = torch.finfo(q.dtype).min
         | 
| 24 | 
            +
                (b, _, s_q, d) = q.shape
         | 
| 25 | 
            +
                s_k = k.size(-1)
         | 
| 26 | 
            +
                if softmax_scale is None:
         | 
| 27 | 
            +
                    softmax_scale = 1 / math.sqrt(d)
         | 
| 28 | 
            +
                attn_weight = q.matmul(k) * softmax_scale
         | 
| 29 | 
            +
                if attn_bias is not None:
         | 
| 30 | 
            +
                    if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
         | 
| 31 | 
            +
                        raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
         | 
| 32 | 
            +
                    attn_weight = attn_weight + attn_bias
         | 
| 33 | 
            +
                if key_padding_mask is not None:
         | 
| 34 | 
            +
                    if attn_bias is not None:
         | 
| 35 | 
            +
                        warnings.warn('Propogating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
         | 
| 36 | 
            +
                    attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
         | 
| 37 | 
            +
                if is_causal:
         | 
| 38 | 
            +
                    s = max(s_q, s_k)
         | 
| 39 | 
            +
                    causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
         | 
| 40 | 
            +
                    causal_mask = causal_mask.tril()
         | 
| 41 | 
            +
                    causal_mask = causal_mask.to(torch.bool)
         | 
| 42 | 
            +
                    causal_mask = ~causal_mask
         | 
| 43 | 
            +
                    causal_mask = causal_mask[-s_q:, -s_k:]
         | 
| 44 | 
            +
                    attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
         | 
| 45 | 
            +
                attn_weight = torch.softmax(attn_weight, dim=-1)
         | 
| 46 | 
            +
                if dropout_p:
         | 
| 47 | 
            +
                    attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
         | 
| 48 | 
            +
                out = attn_weight.matmul(v)
         | 
| 49 | 
            +
                out = rearrange(out, 'b h s d -> b s (h d)')
         | 
| 50 | 
            +
                if needs_weights:
         | 
| 51 | 
            +
                    return (out, attn_weight)
         | 
| 52 | 
            +
                return (out, None)
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
         | 
| 55 | 
            +
                for tensor in tensors:
         | 
| 56 | 
            +
                    if tensor.dtype not in valid_dtypes:
         | 
| 57 | 
            +
                        raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
         | 
| 58 | 
            +
                    if not tensor.is_cuda:
         | 
| 59 | 
            +
                        raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            def flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
         | 
| 62 | 
            +
                try:
         | 
| 63 | 
            +
                    from flash_attn import bert_padding, flash_attn_interface
         | 
| 64 | 
            +
                except:
         | 
| 65 | 
            +
                    raise RuntimeError('Please install flash-attn==1.0.3.post0')
         | 
| 66 | 
            +
                check_valid_inputs(query, key, value)
         | 
| 67 | 
            +
                if attn_bias is not None:
         | 
| 68 | 
            +
                    raise NotImplementedError(f'attn_bias not implemented for flash attn.')
         | 
| 69 | 
            +
                (batch_size, seqlen) = query.shape[:2]
         | 
| 70 | 
            +
                if key_padding_mask is None:
         | 
| 71 | 
            +
                    key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
         | 
| 72 | 
            +
                query_padding_mask = key_padding_mask[:, -query.size(1):]
         | 
| 73 | 
            +
                (query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
         | 
| 74 | 
            +
                query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
         | 
| 75 | 
            +
                (key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
         | 
| 76 | 
            +
                key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
         | 
| 77 | 
            +
                (value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
         | 
| 78 | 
            +
                value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
         | 
| 79 | 
            +
                if multiquery:
         | 
| 80 | 
            +
                    key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
         | 
| 81 | 
            +
                    value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
         | 
| 82 | 
            +
                dropout_p = dropout_p if training else 0.0
         | 
| 83 | 
            +
                reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
         | 
| 84 | 
            +
                output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
         | 
| 85 | 
            +
                output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
         | 
| 86 | 
            +
                return (output, None)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            def triton_flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
         | 
| 89 | 
            +
                try:
         | 
| 90 | 
            +
                    from flash_attn import flash_attn_triton
         | 
| 91 | 
            +
                except:
         | 
| 92 | 
            +
                    raise RuntimeError('Please install flash-attn==1.0.3.post0 and triton==2.0.0.dev20221202')
         | 
| 93 | 
            +
                check_valid_inputs(query, key, value)
         | 
| 94 | 
            +
                if dropout_p:
         | 
| 95 | 
            +
                    raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
         | 
| 96 | 
            +
                if needs_weights:
         | 
| 97 | 
            +
                    raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
         | 
| 98 | 
            +
                if key_padding_mask is not None:
         | 
| 99 | 
            +
                    warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
         | 
| 100 | 
            +
                    (b_size, s_k) = key_padding_mask.shape[:2]
         | 
| 101 | 
            +
                    if attn_bias is None:
         | 
| 102 | 
            +
                        attn_bias = query.new_zeros(b_size, 1, 1, s_k)
         | 
| 103 | 
            +
                    attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
         | 
| 104 | 
            +
                query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
         | 
| 105 | 
            +
                key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
         | 
| 106 | 
            +
                value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
         | 
| 107 | 
            +
                if multiquery:
         | 
| 108 | 
            +
                    key = key.expand(*key.shape[:2], n_heads, key.size(-1))
         | 
| 109 | 
            +
                    value = value.expand(*value.shape[:2], n_heads, value.size(-1))
         | 
| 110 | 
            +
                reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
         | 
| 111 | 
            +
                attn_output = flash_attn_triton.flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
         | 
| 112 | 
            +
                output = attn_output.view(*attn_output.shape[:2], -1)
         | 
| 113 | 
            +
                return (output, None)
         | 
| 114 | 
            +
             | 
| 115 | 
            +
            class MultiheadAttention(nn.Module):
         | 
| 116 | 
            +
                """Multi-head self attention.
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                Using torch or triton attention implemetation enables user to also use
         | 
| 119 | 
            +
                additive bias.
         | 
| 120 | 
            +
                """
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
         | 
| 123 | 
            +
                    super().__init__()
         | 
| 124 | 
            +
                    self.attn_impl = attn_impl
         | 
| 125 | 
            +
                    self.clip_qkv = clip_qkv
         | 
| 126 | 
            +
                    self.qk_ln = qk_ln
         | 
| 127 | 
            +
                    self.d_model = d_model
         | 
| 128 | 
            +
                    self.n_heads = n_heads
         | 
| 129 | 
            +
                    self.softmax_scale = softmax_scale
         | 
| 130 | 
            +
                    if self.softmax_scale is None:
         | 
| 131 | 
            +
                        self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
         | 
| 132 | 
            +
                    self.attn_dropout_p = attn_pdrop
         | 
| 133 | 
            +
                    self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
         | 
| 134 | 
            +
                    fuse_splits = (d_model, 2 * d_model)
         | 
| 135 | 
            +
                    self.Wqkv._fused = (0, fuse_splits)
         | 
| 136 | 
            +
                    if self.qk_ln:
         | 
| 137 | 
            +
                        layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
         | 
| 138 | 
            +
                        self.q_ln = layernorm_class(self.d_model, device=device)
         | 
| 139 | 
            +
                        self.k_ln = layernorm_class(self.d_model, device=device)
         | 
| 140 | 
            +
                    if self.attn_impl == 'flash':
         | 
| 141 | 
            +
                        self.attn_fn = flash_attn_fn
         | 
| 142 | 
            +
                    elif self.attn_impl == 'triton':
         | 
| 143 | 
            +
                        self.attn_fn = triton_flash_attn_fn
         | 
| 144 | 
            +
                        warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
         | 
| 145 | 
            +
                    elif self.attn_impl == 'torch':
         | 
| 146 | 
            +
                        self.attn_fn = scaled_multihead_dot_product_attention
         | 
| 147 | 
            +
                        if torch.cuda.is_available():
         | 
| 148 | 
            +
                            warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
         | 
| 149 | 
            +
                    else:
         | 
| 150 | 
            +
                        raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
         | 
| 151 | 
            +
                    self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
         | 
| 152 | 
            +
                    self.out_proj._is_residual = True
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
         | 
| 155 | 
            +
                    qkv = self.Wqkv(x)
         | 
| 156 | 
            +
                    if self.clip_qkv:
         | 
| 157 | 
            +
                        qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
         | 
| 158 | 
            +
                    (query, key, value) = qkv.chunk(3, dim=2)
         | 
| 159 | 
            +
                    key_padding_mask = attention_mask
         | 
| 160 | 
            +
                    if self.qk_ln:
         | 
| 161 | 
            +
                        dtype = query.dtype
         | 
| 162 | 
            +
                        query = self.q_ln(query).to(dtype)
         | 
| 163 | 
            +
                        key = self.k_ln(key).to(dtype)
         | 
| 164 | 
            +
                    if past_key_value is not None:
         | 
| 165 | 
            +
                        if len(past_key_value) != 0:
         | 
| 166 | 
            +
                            key = torch.cat([past_key_value[0], key], dim=1)
         | 
| 167 | 
            +
                            value = torch.cat([past_key_value[1], value], dim=1)
         | 
| 168 | 
            +
                        past_key_value = (key, value)
         | 
| 169 | 
            +
                    if attn_bias is not None:
         | 
| 170 | 
            +
                        attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
         | 
| 171 | 
            +
                    (context, attn_weights) = self.attn_fn(query, key, value, self.n_heads, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights)
         | 
| 172 | 
            +
                    return (self.out_proj(context), attn_weights, past_key_value)
         | 
| 173 | 
            +
             | 
| 174 | 
            +
            class MultiQueryAttention(nn.Module):
         | 
| 175 | 
            +
                """Multi-Query self attention.
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                Using torch or triton attention implemetation enables user to also use
         | 
| 178 | 
            +
                additive bias.
         | 
| 179 | 
            +
                """
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
         | 
| 182 | 
            +
                    super().__init__()
         | 
| 183 | 
            +
                    self.attn_impl = attn_impl
         | 
| 184 | 
            +
                    self.clip_qkv = clip_qkv
         | 
| 185 | 
            +
                    self.qk_ln = qk_ln
         | 
| 186 | 
            +
                    self.d_model = d_model
         | 
| 187 | 
            +
                    self.n_heads = n_heads
         | 
| 188 | 
            +
                    self.head_dim = d_model // n_heads
         | 
| 189 | 
            +
                    self.softmax_scale = softmax_scale
         | 
| 190 | 
            +
                    if self.softmax_scale is None:
         | 
| 191 | 
            +
                        self.softmax_scale = 1 / math.sqrt(self.head_dim)
         | 
| 192 | 
            +
                    self.attn_dropout_p = attn_pdrop
         | 
| 193 | 
            +
                    self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device)
         | 
| 194 | 
            +
                    fuse_splits = (d_model, d_model + self.head_dim)
         | 
| 195 | 
            +
                    self.Wqkv._fused = (0, fuse_splits)
         | 
| 196 | 
            +
                    if self.qk_ln:
         | 
| 197 | 
            +
                        layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
         | 
| 198 | 
            +
                        self.q_ln = layernorm_class(d_model, device=device)
         | 
| 199 | 
            +
                        self.k_ln = layernorm_class(self.head_dim, device=device)
         | 
| 200 | 
            +
                    if self.attn_impl == 'flash':
         | 
| 201 | 
            +
                        self.attn_fn = flash_attn_fn
         | 
| 202 | 
            +
                    elif self.attn_impl == 'triton':
         | 
| 203 | 
            +
                        self.attn_fn = triton_flash_attn_fn
         | 
| 204 | 
            +
                        warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
         | 
| 205 | 
            +
                    elif self.attn_impl == 'torch':
         | 
| 206 | 
            +
                        self.attn_fn = scaled_multihead_dot_product_attention
         | 
| 207 | 
            +
                        if torch.cuda.is_available():
         | 
| 208 | 
            +
                            warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
         | 
| 209 | 
            +
                    else:
         | 
| 210 | 
            +
                        raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
         | 
| 211 | 
            +
                    self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
         | 
| 212 | 
            +
                    self.out_proj._is_residual = True
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
         | 
| 215 | 
            +
                    qkv = self.Wqkv(x)
         | 
| 216 | 
            +
                    if self.clip_qkv:
         | 
| 217 | 
            +
                        qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
         | 
| 218 | 
            +
                    (query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2)
         | 
| 219 | 
            +
                    key_padding_mask = attention_mask
         | 
| 220 | 
            +
                    if self.qk_ln:
         | 
| 221 | 
            +
                        dtype = query.dtype
         | 
| 222 | 
            +
                        query = self.q_ln(query).to(dtype)
         | 
| 223 | 
            +
                        key = self.k_ln(key).to(dtype)
         | 
| 224 | 
            +
                    if past_key_value is not None:
         | 
| 225 | 
            +
                        if len(past_key_value) != 0:
         | 
| 226 | 
            +
                            key = torch.cat([past_key_value[0], key], dim=1)
         | 
| 227 | 
            +
                            value = torch.cat([past_key_value[1], value], dim=1)
         | 
| 228 | 
            +
                        past_key_value = (key, value)
         | 
| 229 | 
            +
                    if attn_bias is not None:
         | 
| 230 | 
            +
                        attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
         | 
| 231 | 
            +
                    (context, attn_weights) = self.attn_fn(query, key, value, self.n_heads, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True)
         | 
| 232 | 
            +
                    return (self.out_proj(context), attn_weights, past_key_value)
         | 
| 233 | 
            +
             | 
| 234 | 
            +
            def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
         | 
| 235 | 
            +
                if attn_impl == 'flash':
         | 
| 236 | 
            +
                    return None
         | 
| 237 | 
            +
                elif attn_impl in ['torch', 'triton']:
         | 
| 238 | 
            +
                    if alibi:
         | 
| 239 | 
            +
                        if (prefix_lm or not causal) or use_sequence_id:
         | 
| 240 | 
            +
                            return (1, n_heads, seq_len, seq_len)
         | 
| 241 | 
            +
                        return (1, n_heads, 1, seq_len)
         | 
| 242 | 
            +
                    elif prefix_lm or use_sequence_id:
         | 
| 243 | 
            +
                        return (1, 1, seq_len, seq_len)
         | 
| 244 | 
            +
                    return None
         | 
| 245 | 
            +
                else:
         | 
| 246 | 
            +
                    raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
         | 
| 247 | 
            +
             | 
| 248 | 
            +
            def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8):
         | 
| 249 | 
            +
                if attn_impl == 'flash':
         | 
| 250 | 
            +
                    return None
         | 
| 251 | 
            +
                elif attn_impl in ['torch', 'triton']:
         | 
| 252 | 
            +
                    if alibi:
         | 
| 253 | 
            +
                        (device, dtype) = (attn_bias.device, attn_bias.dtype)
         | 
| 254 | 
            +
                        attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
         | 
| 255 | 
            +
                    return attn_bias
         | 
| 256 | 
            +
                else:
         | 
| 257 | 
            +
                    raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
         | 
| 258 | 
            +
             | 
| 259 | 
            +
            def gen_slopes(n_heads, alibi_bias_max=8, device=None):
         | 
| 260 | 
            +
                _n_heads = 2 ** math.ceil(math.log2(n_heads))
         | 
| 261 | 
            +
                m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
         | 
| 262 | 
            +
                m = m.mul(alibi_bias_max / _n_heads)
         | 
| 263 | 
            +
                slopes = 1.0 / torch.pow(2, m)
         | 
| 264 | 
            +
                if _n_heads != n_heads:
         | 
| 265 | 
            +
                    slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
         | 
| 266 | 
            +
                return slopes.view(1, n_heads, 1, 1)
         | 
| 267 | 
            +
             | 
| 268 | 
            +
            def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None):
         | 
| 269 | 
            +
                alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
         | 
| 270 | 
            +
                if full:
         | 
| 271 | 
            +
                    alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
         | 
| 272 | 
            +
                    alibi_bias = alibi_bias.abs().mul(-1)
         | 
| 273 | 
            +
                slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
         | 
| 274 | 
            +
                alibi_bias = alibi_bias * slopes
         | 
| 275 | 
            +
                return alibi_bias.to(dtype=dtype)
         | 
| 276 | 
            +
            ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention}
         | 
